
Quest Journals

Journal of Software Engineering and Simulation

Volume 8 ~ Issue 7 (2022) pp: 23-38

ISSN(Online) :2321-3795 ISSN (Print):2321-3809

www.questjournals.org

*Corresponding Author: Edward N. Udo 23 | Page

Research Paper

A Comparative Analysis Of Adaptive Neuro-Fuzzy

Inference System Back Propagation And Hybrid Learning

For Software Development Effort Evaluation.

Edward N. Udo
1*

, Okure U. Obot
1
 and Peter G. Obike

2

1
Department of Computer Science, Faculty of Science, University of Uyo, Uyo, Nigeria

2
 Department of Computer Science, College of Physical and Applied Sciences, Michael Okpara University of

Agriculture, Umudike, Nigeria.

*Corresponding Author: Edward N. Udo

ABSTRACT: Finding accurately the amount of effort needed to develop any software is quite essential in

software project management because inaccurate estimates affect both the software resources and the

deliverables. A number of models have been developed for the estimation of the amount of effort required to

develop a software. One of such models is the Constructive Cost Model (COCOMO), which was found to

contain uncertain and imprecise inputs. To improve the COCOMO, an Adaptive Neuro-Fuzzy Inference System

(ANFIS) was built by training the data acquired from PROMISE repository – NASA COCOMO with ANFIS

back propagation and hybrid algorithm using MATLAB R 2017. This was done after Principal Component

Analysis (PCA) was employed to reduce the dimensionality of the datasets from 23 to 6. With 6 attributes, the

datasets were trained on the back propagation learning rule and the hybrid learning rule. It was revealed that

the hybrid learns faster from epoch 70 and above. The performance of the outputs of the ANFIS algorithms was

evaluated using Mean Magnitude Relative Error (MMRE) and Root Mean Square Error (RMSE). The results

show that the Hybrid model has the least MMRE and RMSE of 31.4829 and 0.00000187 respectively, which is a

confirmation that ANFIS hybrid learning performs better than ANFIS Back Propagation methods in terms of

training convergence, reduced error and performance.

KEYWORDS: Software Development Effort, ANFIS Back Propagation, Hybrid Learning Algorithm,

COCOMO

Received 25 June, 2022; Revised 05 July, 2022; Accepted 07 July, 2022 © The author(s) 2022.

Published with open access at www.questjournals.org

I. INTRODUCTION
In software project management, cost estimation is used to measure the success of any software project

[1]. Software development cost estimation guides in the prediction of the likely amount of effort, time and

staffing required in building a software system [2] and is one of the most important activities, with a critical

role, in software project management process [3].

Software development effort estimation is defined as a set of tasks that should be performed in order to

derive some estimates, which are usually expressed in terms of hours and money [4]. It is the process of finding

out the exact effort required to develop or maintain a software [5].

Estimating the cost or the effort in person-months required in developing any software project

accurately is very essential at the early stages of the software development life cycle (SDLC) [6]. This accurate

prediction helps investors in software projects and their customers to know the total investment needed for the

project as well as the project schedule. This is the reason many organizations that are involved in software

projects usually estimate the resources, effort and time needed to satisfactorily complete the project and hand it

over to the client as scheduled [7].

With inaccurate estimation figures, it becomes almost impossible to thoroughly plan, monitor and

control a software project [8] and this can have adverse consequences on project resources [6]. According to the

result of the research conducted by the International Society of Parametric Analysis (ISPA) [9] and the Standish

Group International [10], two thirds of software projects are not delivered on time and within budget; this is due

A Comparative Analysis Of Adaptive Neuro-Fuzzy Inference System Back Propagation And ..

*Corresponding Author: Edward N. Udo 24 | Page

to incorrect estimation (in terms of project size, cost, needed staff etc) and inappropriate software and system

requirements [6].

An accurate estimate of the software effort, cost and schedule is very important in managing financial

issues and monitoring all the developmental activities and on-time delivery [1]. The ability to predict the cost or

effort of a software project has a direct impact on the management decision as either to accept or reject the

proposal to venture into such a project [3]. Accurate estimation of software resources is very challenging and as

such many techniques have been investigated and proposed in the past decades with the aim of improving the

accuracy of software estimation models [11], support project managers to elaborate budget, forecast iteration

and define project plans [12] and also support software developers in performing several of their software

development tasks.

The techniques used in software effort estimation are categorized into three main groups: expert

judgment, algorithmic models, and machine learning models [13]. In expert judgment group, the software

project effort estimation depends on the expertise and experience of the estimator [14]. The expertise of the

estimator is based on the problem domain the estimator is familiar with as well as the similarity index of the

software projects in question with the estimator’s familiar historical projects.

Algorithmic (parametric) models group use mathematical equations to predict software cost. These

models are derived from statistical or numerical analysis of historical software project data [8]. Constructive

Cost Model (COCOMO) is a parametric model; software size is the main input of these models. Linear and non-

linear regression equations can be used in parametric models [6]. The algorithmic estimation models are very

simple and reliable but not so accurate. The categorical datasets cannot be estimated using parametric models

[5]. Algorithmic models require inputs that are estimated accurately and with specific attributes. These inputs

are not easy to get at the early stages of SDLC. Algorithmic models also have issues in predicting accurately the

development cost and effort; the accuracy of such estimates is always very low due to availability of limited

information at the early stages of software development. These limitations of the algorithmic models led to the

exploration of the non algorithmic techniques, visualized through soft computing approaches [2].

Machine learning (nonparametric and non algorithmic) models group are based on nonlinear

characteristics [11]; set of artificial intelligence techniques, such as artificial neural networks, genetic

algorithms, regression trees, rule-based induction, analogy-based or case-based reasoning (CBR), and fuzzy

logic etc [8]. Machine learning techniques have gained popularity in cost estimation of predictive models [3].

These models can be standalone models or models that work in conjunction with algorithmic models. Some

non-standalone works include: [15 -16] predicted software effort using Naïve Bayes, Logistic Regression and

Random Forests; [17] investigated software development effort estimation using polynomial linear regression,

ridge regression, decision trees, support vector regression, and Multilayer Perceptron.

Unfortunately, the industry is plagued with unreliable estimates, and no effort estimation model has

proven to be consistently successful at predicting software project effort in all situations [8]. Even with these

several software development effort estimation models in place and their crucial impact on budgeting and

project planning in the industry, software development effort estimation is still an open question in the field of

software engineering [12]. This means that practitioners and researchers are yet to have an effective and widely

acceptable approach for estimation and evaluation of software development effort; they still need to choose any

approach that matches their domain and researches needs respectively. The adoption of an approach that does

not fit their needs becomes questionable in realistic scenarios [12].

This work therefore compares software development effort models: COCOMO, Adaptive Neuro Fuzzy

Inference System (ANFIS) Back Propagation and ANFIS Hybrid with 6 input parameters instead of traditional

23 inputs used in literature. This comparison is yet to be done in literature. Datasets for COCOMO model was

collected from Promise Repository and the number of input parameters in the dataset reduced using Principal

Component Analysis (PCA). Fuzzy inference system was generated and trained using ANFIS Back Propagation

methods and hybrid learning algorithms. The performance was evaluated using MMRE and RMSE. In Section

2, related work, fuzzy logic model and ANFIS pseudo-code are presented. Section 3 presents the attributes used

for software development effort prediction while section 4 discusses dimension reduction using Principal

Component Analysis (PCA). Section 5 and 6 considers ANFIS training and performance evaluation

respectively. The work is concluded in section 7.

II. RELATED WORK
COCOMO proposed a nonlinear relationship between the size of the project and estimated effort

measured in person months [18]. With the advent of component based development and service oriented

architecture, COCOMO model was improved to COCOMO II to include changes evidenced around code reuse,

function points and other related changes. COCOMO II was also formulated with a nonlinear relationship

between the size of the project and estimated effort.

A Comparative Analysis Of Adaptive Neuro-Fuzzy Inference System Back Propagation And ..

*Corresponding Author: Edward N. Udo 25 | Page

ANFIS is a framework of a neuro-fuzzy model which adapts itself through learning. It is used to

identify systems based on available data and its result is significant when used in modeling non-linear functions

[19 – 22]. ANFIS model has the advantage of having both numerical and linguistic knowledge [23].

There are several COCOMO and ANFIS based software effort development models using NASA

datasets in literature. [24] proposed the use of ANFIS for software effort estimation using COCOMO II datasets.

The ANFIS was modeled for several type of membership functions like Gaussian curve, Difference of sigmoidal

membership, Gaussian combination membership, Trapezoidal membership, Triangular membership functions

etc. [25] designed an efficient software effort estimation model using ANFIS on COCOMO datasets and tested

it to see how it performed. [1] used a Neuro-fuzzy model optimized with PSO to derive an improved software

development effort estimation model using NASA dataset software project. The results of the optimization were

trained using ANFIS to get an effort prediction. [26] carried out neuro-fuzzy computing through ANFIS using

COCOMO and COCOMO II datasets by comparing the expected and the actual data. The results showed that

ANFIS model can be efficiently used for estimating software development effort.

ANFIS have been combined with other algorithms/models to estimate software development effort.

Such models include Decision Tree and Artificial Neural Network [27], Multilayer Perceptron [28], Hybrid

Particle Swarm Optimization [1], Naïve Bayes, Logistic Regression and Random Forests [16], Differential

Evolution Algorithm [29], Functional Point Analysis [30]. It is also important to compare the two variants of

ANFIS; back propagation and hybrid, which is the aim of this work.

a. Fuzzy Logic Model for Software Development Effort Evaluation

The fuzzy logic model for software development effort evaluation, shown in Figure 1, contains a knowledge

base and processing stage. The knowledge base provides membership functions and the fuzzy rules needed for

the process. Numerical crisp variables are the input of the system in the processing stage. These variables are

passed through a fuzzification stage where they are transformed into linguistic variables, which become the

fuzzy input of the inference engine. This fuzzy input is transformed by rules of the inference engine to fuzzy

output. These linguistic results are then changed by a defuzzification stage into numerical values that becomes

the output of the system.

Figure 1: Fuzzy Logic Model for Software Development Effort Evaluation

b. Pseudo-Code of ANFIS Evaluation

Begin:

Step I: Determine the inputs of the model;

Collect datasets;

Divide the datasets into: Training and Testing (for evaluating the validity of the estimated model).

Step II: Generate ANFIS model;

[Define Number of Membership functions] numMFs;

A Comparative Analysis Of Adaptive Neuro-Fuzzy Inference System Back Propagation And ..

*Corresponding Author: Edward N. Udo 26 | Page

[define type of Membership functions] mfType;

[define Number of epoch] epoch_n;

[Generate Fuzzy Inference System structure from data using grid partition] in_fis=genfis1 (trnData, numMFs,

mfType);

[Training routine for Sugeno-type Fuzzy Inference System (uses a hybrid learning algorithm)] out_fis= anfis

(trnData,in_fis,epoch_n);

Step III: Evaluate the value of Development Time;

For each individual test data

For i=1 to total test data

[Evaluate the value of Development Time]

dt(i)= evalfis(inpData,fis);

Next i;

Step IV: Evaluate the Value of MRE and MSE from result obtained in step III;

For MRE and MSE of each individual test data

For i = 1: to total test data

mre(1,i)=abs((Actual dt(i)-dt(i))/Actual

dt(i));

 Next i;

Step V: Evaluate the Value of MMRE and PRED from result obtained in step IV;

For MMRE and PRED of each individual test data

Initialize mmre =0, pred =0;

For i = 1: to total test data

mmre = mmre+mre(i);

IF (mre (i) <=.25)

pred =pred+1;

EndIF

Next i;

MMRE= (mmre/ (total test data))*100;

PRED=pred/ (total test data);

End:

III. ATTRIBUTES USED FOR SOFTWARE DEVELOPMENT EFFORT PREDICTION
The attributes are divided into NASA, COCOMO and modes of development constraints. They are described in

Table 1 – 3.

Table 1: NASA based attributes

NASA ATTRIBUTES DESCRIPTION

Uniqueid Defined as numbers to identify each unique project. The numbers are not continuous since the

records are a subset of another NASA database.
Forg States whether it is a flight or ground system

Center Used to define the NASA center. Examples include 1, 2,3, 4, 5, 6

year Defines the year of development
Mode Defines the development mode, whether it is embedded, organic or semidetached

Table 2: COCOMO attributes

COCOMO ATTRIBUTES DESCRIPTIONS

RELY Defined as the reliability of the system
DATA Defined as the database size

CPLX Measures Process complexity
TIME Measures Time constraint for CPU

STOR Measures Memory constraint

VIRT Measures Machine volatility

A Comparative Analysis Of Adaptive Neuro-Fuzzy Inference System Back Propagation And ..

*Corresponding Author: Edward N. Udo 27 | Page

TURN Measures Turnaround time
ACAP Measures analysts capability

AEXP Measures application experience

PCAP Defines programmer’s capability
VEXP Measures virtual machine experience of the developers

LEXP Measures language experience of the programmers

MODP Measures modern programing practices of the programmer
TOOL Measures the programmer’s use of software tools

SCED Measures schedule constraint

Table 3: Modes of Development Constants

Mode A B C D

Organic 2.4 1.05 2.5 0.38
Semi-detached 3 1.12 2.5 0.35

Embedded 3.6 1.20 2.5 0.32

Table 4 shows the ratings (numeric values) of the COCOMO effort attributes (multipliers) and their correlation

with more effort.

Table 4: COCOMO Attributes: Ratings and Correlation
Effort

Attributes

Ratings(Numeric Values) Correlation with

more Effort Very

Low

Low Nominal High Very

High

Extra

High

ACAP 1.46 1.19 1.00 0.86 0.71 Positive

PCAP 1.42 1.17 1.00 0.86 0.70 Positive

AEXP 1.29 1.13 1.00 0.91 0.82 Positive

MODP 1.24 1.10 1.00 0.91 0.82 Positive

TOOL 1.24 1.10 1.00 0.91 0.83 Positive

VEXP 1.21 1.10 1.00 0.90 Positive

LEXP 1.14 1.07 1.00 0.95 Positive

SCED 1.23 1.08 1.00 1,04 1.10 No Correlation

STOR 1.00 1.06 1.21 1.56 Negative

DATA 0.94 1.00 1.08 1.16 Negative

TIME 1.00 1.11 1.30 1.66 Negative

TURN 0.87 1.00 1.07 1.15 Negative

VIRT 0.87 1.00 1.15 1.30 Negative

RELY 0.75 0.88 1.00 1.15 1.40 Negative

CPLX 0.70 0.85 1.00 1.15 1.30 1.65 Negative

The COCOMO software cost model measures effort in calendar months of 152 hours (development and

management hours included). COCOMO assumes that the effort grows more than linearly on software size; that

is:

𝑝𝑒𝑟𝑠𝑜𝑛 𝑝𝑒𝑟 𝑚𝑜𝑛𝑡ℎ𝑠 = 𝐴 ∗ 𝑆𝑖𝑧𝑒 𝑆𝑐𝑎𝑙𝑒𝐹𝑎𝑐𝑡𝑜𝑟 ∗ 𝐸𝑓𝑓𝑜𝑟𝑡 𝑀𝑢𝑙𝑡𝑖𝑝𝑙𝑖𝑒𝑟 (1)

Size is the estimated size in KLOC, scale factor is the combined process factors, and Effort multiplier is the

combined effort factors. The constant and the scale factor are domain-specific parameters and Effort Multiplier

is the product of over a dozen effort multipliers.

IV. DIMENSION REDUCTION
Principal Component Analysis (PCA) was used to reduce the dimension of COCOMO 11 NASA

dataset from 23-input feature vector to a 6-input feature vector. For design’s sake, the first two data points are

used for reduction with only 15 inputs considered to aid in flawless computation. The mathematical principle

behind dimension reduction is to find a vector that defines the surface to which we wish to project the data.

The first eleven data point in the dataset used to illustrate the workings behind PCA is given in Table 5.

Table 5: 15 COCOMO II sample for PCA

1 1.15 0.94 1.15 1.00 1.00 0.87 0.87 1.00 1.00 1.00 1.00 0.95 0.91 1.00 1.08

2 1.15 0.94 1.15 1.00 1.00 0.87 0.87 1.00 1.00 1.00 1.00 0.95 0.91 1.00 1.08

3 1.15 0.94 1.15 1.00 1.00 0.87 0.87 1.00 1.00 1.00 1.00 0.95 0.91 1.00 1.08

4 1.15 0.94 1.15 1.00 1.00 0.87 0.87 1.00 1.00 1.00 1.00 0.95 0.91 1.00 1.08

5 1.15 0.94 1.15 1.00 1.00 0.87 0.87 1.00 1.00 1.00 1.00 0.95 0.91 1.00 1.08

6 1.15 0.94 1.15 1.00 1.00 0.87 0.87 1.00 1.00 1.00 1.00 0.95 0.91 1.00 1.08

7 1.15 0.94 1.15 1.00 1.00 0.87 0.87 1.00 1.00 1.00 1.00 0.95 0.91 1.00 1.08

A Comparative Analysis Of Adaptive Neuro-Fuzzy Inference System Back Propagation And ..

*Corresponding Author: Edward N. Udo 28 | Page

8 1.15 0.94 1.15 1.00 1.00 0.87 0.87 1.00 1.00 1.00 1.00 0.95 0.91 1.00 1.08

9 1.15 0.94 1.15 1.66 1.56 0.87 1.07 0.86 0.91 0.86 1.00 0.95 0.91 0.91 1.00

10 1.00 0.94 1.15 1.00 1.00 0.87 0.87 0.86 0.82 0.70 1.00 0.95 1.00 1.00 1.00

11 1.00 0.94 1.15 1.00 1.00 0.87 0.87 0.86 0.82 0.86 1.00 0.95 1.00 1.00 1.00

After the calculation of the mean of the 15 cost drivers, the transpose matrix of the dataset, the estimation of the

covariance and the correlation set matrix, the Eigen vector is shown in Table 6.

Table 6: Eigen Vector of the Correlation Matrix

0.42 -0.14 0.02 -0.12 0.15 -0.03 -0.49 0.13 0.00 -0.34 0.41 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -0.71 -0.46 0.37 0.71 -0.71 -0.71 0.71

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.71 -0.46 0.37 0.71 -0.71 -0.71 0.71

0.37 0.25 0.17 0.11 0.12 -0.09 0.27 0.02 0.00 0.02 0.04 0.00 0.00 0.00 0.00

0.26 0.29 0.07 -0.17 -0.71 0.54 -0.10 -0.09 0.00 0.00 0.00 0.00 0.00 0.00 0.00

-0.11 -0.10 0.54 -0.38 0.11 0.04 0.03 -0.17 0.00 0.08 0.07 0.00 0.00 0.00 0.00

0.37 0.25 0.17 0.11 0.12 -0.09 0.27 0.02 0.00 -0.38 0.33 0.00 0.00 0.00 0.00

0.20 -0.44 -0.17 -0.23 -0.04 0.12 0.37 0.16 0.00 -0.16 -0.27 0.00 0.00 0.00 0.00

0.17 -0.38 0.15 0.25 -0.52 -0.57 -0.02 -0.39 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.09 -0.34 0.14 0.56 0.26 0.57 -0.02 -0.39 0.00 0.00 0.00 0.00 0.00 0.00 0.00

-0.11 -0.10 0.54 -0.38 0.11 0.04 0.03 -0.17 0.00 -0.08 -0.07 0.00 0.00 0.00 0.00

-0.15 -0.17 0.47 0.36 -0.22 0.05 -0.03 0.73 0.00 0.00 0.00 0.00 0.00 0.00 0.00

-0.42 0.14 -0.02 0.12 -0.15 0.03 0.49 -0.13 0.00 -0.34 0.41 0.00 0.00 0.00 0.00

-0.37 -0.25 -0.17 -0.11 -0.12 0.09 -0.27 -0.02 0.00 -0.36 0.36 0.00 0.00 0.00 0.00

0.20 -0.44 -0.17 -0.23 -0.04 0.12 0.37 0.16 0.00 0.16 0.27 0.00 0.00 0.00 0.00

The coefficients of the eigenvectors serve as the regression coefficients of the 15 principal components (PC).

For example, the first PC can be expressed by:

𝑃𝐶1 = 0.42𝑅𝐸𝐿𝑌 + 0𝐷𝐴𝑇𝐴 + 0𝐶𝑃𝐿𝑋 + 0.37𝑇𝐼𝑀𝐸+. .−0.37𝑇𝑂𝑂𝐿
+ 0.20𝑆𝐶𝐸𝐷 (2)

For dimension reduction, the eigen vector can be rearranged in their descending order to see how each variance

was accounted for by the eigen vector; this and some other important information is shown in Table 7.

Table 7: Eigen value summary

Eigen Value Percentage

Composition

Cumulative

Percentage

5.1849 34.57% 34.57%

3.4028 22.69% 57.26%

2.5140 16.76% 74.02%

1.1960 7.97% 81.99%

0.4576 3.05% 85.04%

0.2837 1.89% 86.93%

-0.0997 -0.67% 86.26%

0.0606 0.40% 86.66%

2.0000 13.33% 99.99%

6.04E-16 4.03e-15% 99.99%

-2.43E-16 -1.62e-15% 99.99%

-3.14E-17 -2.09e-16% 99.99%

-1.11E-17 -7.4e-17% 99.99%

3.85E-18 2.57e-17% 99.99%

-1.21E-32 -8.07e-32 99.99%

Total = 15

The corresponding bar chart for the data in Table 7 is depicted in Figure 2.

A Comparative Analysis Of Adaptive Neuro-Fuzzy Inference System Back Propagation And ..

*Corresponding Author: Edward N. Udo 29 | Page

Figure 2: Variable Reduction Series from Eigen Values

From the above chart, it can seen that the principal component determinant, which is the Eigen vector

favors only RELY, DATA, CPLX, TIME and AEXP based on their percentage composition. For design’s sake,

PCA is used to reduce 15 dimensions in the original COCOMO II file to 5 dimensions for flawless

computations; however, in the implementation using MATLAB, the 23 inputs is reduced to 6.

V. ANFIS TRAINING
The model was trained with 70% of the entire dataset and tested with 30% of the dataset. Figure 3 shows the

distribution of training dataset.

Figure 3: ANFIS training dataset

 The model training was carried out on different number of epochs: 10 epoch, 20 epoch, 25 epoch, 30

epoch, 50 epoch, 70 epoch and 100 epoch. The ANFIS training result with different epoch values are presented

in Figures 4 – 9. Figure 4 shows the ANFIS training error result at 10 epoch with a training error of 0.5732 and

0.0079 for Back Propagation and Hybrid algorithm respectively.

-1

0

1

2

3

4

5

6

Variable Reduction Series

Eigen Vector % Composition Cummulative %

A Comparative Analysis Of Adaptive Neuro-Fuzzy Inference System Back Propagation And ..

*Corresponding Author: Edward N. Udo 30 | Page

Figure 4: Training Results for Epoch 10 (Back Propagation vs Hybrid)

Figure 5 shows the ANFIS training with 20 epoch giving a training error of 0.5305 and 0.0063for Back

Propagation and Hybrid algorithm respectively.

Figure 5: Training result with 20 Epochs (Back Propagation vs Hybrid)

Figure 6 is the ANFIS training result with 50 epochs giving a training error of 0.4966 and 0.0050 for Back

Propagation and Hybrid algorithm respectively.

Figure 6: Training result with 50 Epoch (Back Propagation vs Hybrid)

A Comparative Analysis Of Adaptive Neuro-Fuzzy Inference System Back Propagation And ..

*Corresponding Author: Edward N. Udo 31 | Page

Figure 7 presents the training results at epoch of 60 with a training error of 0.4867 and 0.0048 for Back

propagation and Hybrid algorithm respectively. At Epoch 60, BP algorithm converges while the Hybrid

experienced a premature convergence.

Figure 7: Training result with 60 Epoch (Back Propagation vs Hybrid)

Figure 8 presents the training results at epoch of 70 with a training error of 0.4773 and 0.0045 for Back

propagation and Hybrid algorithm respectively. Figure 9 shows the training results at Epoch 100. At Epoch 70,

BP algorithm had converged already with some little divergence difference of 0.0094 but the Hybrid

experienced a proper convergence from Epoch 70.

Figure 8: Training result with 70 epochs (Back Propagation vs Hybrid)

Figure 9: Training result with 100 epochs (Back Propagation (BP) vs Hybrid (HB))

A Comparative Analysis Of Adaptive Neuro-Fuzzy Inference System Back Propagation And ..

*Corresponding Author: Edward N. Udo 32 | Page

The effect of epoch on the training error is presented in Table 8. This suggests also that Hybrid performs better

at Epoch 70.

Table 8: ANFIS Training Errors

Metric Values

Epoch 10 20 50 60 70 100

BP Training Error 0.5732 0.5305 0.4966 0.4867 0.4773 0.4559

HB Training Error 0.0079 0.0063 0.0050 0.0048 0.0045 0.0045

The ANFIS training error plot is shown in Figure 10.

Figure 10: ANFIS Training Error Plot

In order to test the accuracy of the ANFIS model, 30% of the reduced dataset was used for model testing. The

training error and validation error for each of the epoch is shown in Figure 11.

Figure 11: Training Error and Validation Error Plots

A Comparative Analysis Of Adaptive Neuro-Fuzzy Inference System Back Propagation And ..

*Corresponding Author: Edward N. Udo 33 | Page

The effect of the epoch on the model testing is shown in Table 9 which presents the ANFIS testing error on the

2 different ANFIS training models trained at different epochs.

Table 9: ANFIS Testing Error

Metric Values

Epoch 10 20 50 60 70 100

Testing Error BP 0.64217 0.5991 0.56104 0.5491 0.5403 0.5160

Testing Error HB 0.5735 0.2167 0.1892 0.1889 0.1877 0.12156

The graph in Figure 12 compares the ANFIS model output and COCOMO output which is the actual effort

(number of person-hours) required to develop software.

Figure 12: ANFIS Output and Real Output

Table 10 is the result of prediction comparisons between COCOMO, HB ANFIS and BP ANFIS

Models. The COCOMO Model is the actual software development effort. The Rel. DIFF column is the Relative

Difference between the COCOMO Effort and ANFIS effort. The result shows HB ANFIS prediction with less

than 1% difference from the COCOMO effort, relative to other predictions.

Table 10: Comparison of Predictions and COCOMO Model

COCOMO Model HB ANFIS Model
Rel. DIFF

BP ANFIS Model

2 2.02
0.07%

-1929.282

2 2.02
0.07%

-1929.282

2 2.02
0.07%

-1929.282

8 0.33
7.45%

99.827

8 6.02
0.67%

98.329

11 11.74
0.08%

101.436

12 132.81
705.99%

192.026

18 20.62
0.38%

104.128

24 23.91
0%

-50.582

25 39.52
7.58%

110.623

31 30.47
0.02%

107.388

A Comparative Analysis Of Adaptive Neuro-Fuzzy Inference System Back Propagation And ..

*Corresponding Author: Edward N. Udo 34 | Page

36 32.73
0.29%

108.173

36 47.59
3.52%

42.990

38 69.03
21.79%

121.155

42 36.19
0.78%

-286.710

42 28.45
4.09%

-174.849

48 79.63
17.87%

357.137

48 47.25
0.01%

19.203

48 61.54
3.57%

58.849

50 42.71
1.03%

111.816

60 59.22
0.01%

118.441

60 48.31
2.15%

130.590

60 90.62
13.46%

-142.057

60 85.82
9.8%

162.348

60 66.44
0.67%

327.549

62 62.58
0.01%

541.649

70 76.50
0.59%

456.794

72 58.94
2.22%

-200.064

72 72.83
0.01%

46.129

72 19.67
29.61%

-54.742

82 81.31
0.01%

427.410

90 119.13
8.18%

160.002

97 191.20
59.26%

378.720

99 118.95
3.72%

156.979

107 88.52
2.91%

273.722

114 112.82
0.01%

-65.386

118 115.30
0.04%

146.066

118 109.08
0.59%

142.629

120 132.64
1.25%

156.110

155 168.91
1.17%

197.978

170 166.78
0.06%

-105.737

192 181.54
0.54%

-200.767

210 128.47
21.64%

47.986

215 321.99
32.69%

345.479

239 245.30
0.16%

-627.327

240 285.05
6.81%

140.486

252 247.24
0.09%

326.412

278 275.66
0.02%

167.714

300 336.55
3.73%

302.057

300 380.94
14.97%

245.872

300 316.02
0.79%

176.975

324 316.68
0.16%

-186.518

353 316.02
3.21%

302.057

360 343.26
0.72%

535.238

360 364.58
0.06%

670.311

370 359.86
0.26%

577.728

A Comparative Analysis Of Adaptive Neuro-Fuzzy Inference System Back Propagation And ..

*Corresponding Author: Edward N. Udo 35 | Page

400 315.35
12.08%

847.459

409 429.74
0.95%

169.447

420 422.01
0.01%

789.459

430 345.35
11.24%

303.532

432 516.45
11.15%

830.974

444 441.56
0.01%

713.286

444 445.69
0.01%

380.968

458 436.90
0.88%

107.264

480 488.49
0.14%

414.503

480 333.92
23.37%

355.971

571 509.58
4.99%

480.314

576 360.61
33.06%

614.676

599 676.05
6.91%

745.243

600 512.74
8.47%

635.196

636 633.75
0.01%

532.145

648 645.17
0.01%

655.504

703 697.72
0.04%

807.428

720 719.95
0%

726.577

750 795.34
2.2%

644.248

756 795.25
1.69%

868.471

882 882.10
0%

908.801

973 969.17
0.01%

1216.975

1181 1178.06
0.01%

1385.985

1200 1201.80
0%

1071.178

1248 1254.66
0.03%

1125.642

1350 1350.62
0%

1689.326

1368 1372.02
0.01%

1469.094

1646 1676.70
0.5%

2320.574

1773 1741.64
0.46%

2187.276

1925 1924.47
0%

1761.842

2120 2107.53
0.07%

1744.086

2400 2400.42
0%

2591.337

2400 2399.25
0%

2270.225

2460 2461.58
0%

2777.290

4178 4179.06
0%

4834.174

4560 4558.77
0%

5099.861

8211 8210.53
0%

6608.818

VI. PERFORMANCE EVALUATION

Based on the conducted experiments, ANFIS model using Hybrid Training Model with six (6) inputs reduced by

PCA gave better estimate than the Back Propagation Model with six (6) inputs reduced by PCA. The result of

performance measures using MMRE and MSE for each of the training is shown in Table 11.

Table 11: Performance Evaluation Results

Measure BP ANFIS Model HB ANFIS Model

MMRE 388.2579 31.4829

MSE 0.000082 0.00000187

A Comparative Analysis Of Adaptive Neuro-Fuzzy Inference System Back Propagation And ..

*Corresponding Author: Edward N. Udo 36 | Page

From Table 11, it is seen that Hybrid Model gives a better result than Back Propagation model.

The MRE Performance Measure of Hybrid and Back Propagation were plotted. The plot shows that the

Hybrid training guaranteed convergence more than BP training. In Figure 13, the high shoots between Epoch 10

and Epoch 20, Epoch 60 and 90 were responsible for negative predictions. In some cases, the predictions

appeared to be meaningful why others were not. This is where the least square method complements the back

propagation algorithm to prevent large learning rate that may have occurred at the early epochs.

Figure 13: MRE Plot ANFIS BP

In Figure 14, the least square method complements the large learning rate that occurred between epoch 10 and

20. These learning rates, if large, affect the weights of neuron, so the least square updates parameters by

minimizing the squared difference between observed data and desired data. At Epoch 20 the large learning rate

was reduced by least-square hence ensuring convergence at Epoch 70.

Figure 14 - MRE Plot ANFIS HB

A Comparative Analysis Of Adaptive Neuro-Fuzzy Inference System Back Propagation And ..

*Corresponding Author: Edward N. Udo 37 | Page

VII. CONCLUSION

Software development effort estimation is very essential in software project management because

proper effort estimation aids in the prediction of required resources, time and personnel costs. As at present, no

effort estimation model has proven to be consistently successful in the prediction of software development

effort, employing other approaches and/or comparing the performance of existing approaches on different

situations is still open to research.

This work compares software development effort models: COCOMO, Adaptive Neuro Fuzzy Inference

System (ANFIS) Back Propagation and ANFIS Hybrid. The result obtained shows that using the hybrid

algorithm of ANFIS with a reduced input of 6 perform better than the COCOMO and the back propagation

model while using both 23 and 6 inputs. The performance evaluation reveals that hybrid training model is more

efficient and stable in terms of reduced error.

To avoid underestimation or overestimation of software development effort, which can result in

catastrophic effect during software planning, many models and approaches have been proposed; with results

suggesting that these models are all estimating software development effort accurately. It is quite obvious that

these models may not be very successful in predicting software effort in certain situations given some other

kinds of data. It is therefore pertinent to continue to compare different models using different datasets and

situations all in an attempt to arrive at a generic software development effort estimation model.

For further research, the COCOMO dataset used by many authors to implement software development

effort estimates possesses some level of imprecision and therefore certain factors such as productivity of team

size may be introduced into the model and compared with the two ANFIS algorithms (back propagation and

hybrid) to see the one which performs best.

REFERENCES

[1]. Suharjito, S., Nanda, S. and Soewito, B. (2016). Modeling Software Effort Estimation Using Hybrid PSO- ANFIS, In Proceedings

of 2016 International Seminar on Intelligent Technology and Its Application, Lombok, Indonesia, 219 – 224

[2]. Chawla, R., Ahlawat, D. and Kumar, M. (2014). Software Development Effort Estimation Techniques: A Review. International

Journal of Electronics Communication and Computer Engineering, 5(5), 2278 – 4209
[3]. Nassif, A. B., Azzeh, M., Idri, A. and Abran, A. (2019). Software Development Effort Estimation Using Regression Fuzzy

Models. Hindawi Computational Intelligence and Neuroscience, Volume 2019, Article ID 8367214,

https://doi.org/10.1155/2019/8367214
[4]. Chatzipetrou, P., Papatheocharous, E., Angelis, L., et al., (2015). A multivariate statistical framework for the analysis of software

effort phase distribution, Inf. Softw. Technol., 2015, 59, pp. 149–169
[5]. Shivakumar, N., Balaji, N. and Ananthakumar, K (2016): A Neuro Fuzzy Algorithm to Compute Software Effort Estimation, Global

Journal of Computer Science and Technology: C - Software and Data Engineering, 16(1), 23 – 28.

[6]. Nassif, A. B., Azzeh, M., Capretz, L. F. and Ho, D. (2016). Neural Network Models for Software Development Effort Estimation:
A Comparative Study. Neural Computing and Applications, 27(8), 2369-2381, doi: 10.1007/s00521-015-2127-1

[7]. Aljohani, M. and Qureshi, R. (2017). Comparative Study of Software Estimation Techniques, International Journal of Software

Engineering and Applications, 8(6), 39 – 53. DOI: 10.5121/ijsea.2017.8603
[8]. Amazal, F. and Idri, A (2014). Software Development Effort Estimation using Classical and Fuzzy Analogy: A Cross-validation

Comparative Study, International Journal of Computational Intelligence and Applications, 13(3), 1450013, doi:

10.1142/S1469026814500138
[9]. Eck, D., Brundick, B., Fettig, T., Dechoretz, J. and Ugljesa, J. (2009). Parametric estimating handbook, Fourth Edition, The

International Society of Parametric Analysts (ISPA), Parametric estimating handbook, Fourth Edition, Vienna, VA, USA, pp 488

[10]. Lynch, J. (2009). Chaos manifesto, The Standish Group, Boston. Available Online:
http://www.standishgroup.com/newsroom/chaos_2009.php.

[11]. Silhavy, R., Silhavy, P. and Prokopova, Z. (2017). Analysis and selection of a regression model for the use case points method

using a stepwise approach, Journal of Systems and Software, vol. 125, pp. 1–14.
[12]. Carbonera, C. E., Farias, K. and Bischoff, V. (2020). Software development effort estimation: a systematic mapping study.

Institution of Engineering and Technology Software, 14(4), 328-344

[13]. Lopez-Martin, C., Y´añez-M´arquez, C. and Gutierrez-Tornes, A. (2006). A fuzzy logic model for software development effort
estimation at personal level, in Lecture Notes in Computer Science, Springer, Berlin, Germany, pp. 122–133

[14]. Jorgensen, M. (2007). Forecasting of software development work effort: Evidence on expert judgment and formal models.

International Journal of Forecasting, 23(3), 449-462
[15]. Mustapha, A. (2018). Predicting Software Effort Estimation Using Machine Learning Techniques, In Proceedings of 8 th

International Conference on Computer Science and Information Technology, Amman, 249- 256

[16]. Marapelli, B. and Peddi, P. (2020). Effort Estimation Methods in Software Development using Machine Learning Algorithms,
Parishodh Journal. Vol. IX, Issue 1, 824 – 829.

[17]. Rehmana, I., Alib, Z. and Jana, Z (2021). An Empirical Analysis on Software Development Efforts Estimation in Machine Learning

Perspective, Advances in Distributed Computing and Artificial Intelligence Journal, 10(3), 227-240
[18]. Singal, P., Kumari, A. and Sharma, P. (2020). Estimation of Software Development Effort: A Differential Evolution Approach. In

Proceedings of International Conference on Computational Intelligence and Data Science, Procedia Computer Science, 167, 2643 –

2652.
[19]. Loganathan, C. and Girija, K. (2014): Investigations on Hybrid Learning in ANFIS. International Journal of Engineering Research

and Applications, 4(10), 31 – 37.

[20]. Srisaeng, P., Baxter, G.S., Wild, G. (2015). An adaptive neuro-fuzzy inference system for forecasting Australia’s domestic low cost
carrier passenger demand. Aviation, 19, 150–163.

https://doi.org/10.1155/2019/8367214
http://www.standishgroup.com/newsroom/chaos_2009.php

A Comparative Analysis Of Adaptive Neuro-Fuzzy Inference System Back Propagation And ..

*Corresponding Author: Edward N. Udo 38 | Page

[21]. Kamari, A., Mohammadi, A. H.., Lee, M. and Bahadori, A. (2017). Decline curve based models for predicting natural gas well

performance. Petroleum, 3, 242–248

[22]. Sonmez, A. Y., Kale, S., Ozdemir, R. C. and Kadak, A. E (2018): An Adaptive Neuro-Fuzzy Inference System (ANFIS) to
Predict of Cadmium (Cd) Concentrations in the Filyos River, Turkey. Turkish Journal of Fisheries and Aquatic Sciences 18:1333-

1343. DOI: 10.4194/1303-2712-v18_12_01

[23]. Sahin, M. and Erol, R. (2017): A Comparative Study of Neural Networks and ANFIS for Forecasting Attendance Rate of Soccer
Games. Mathematical and Computing Applications, MDPI, 22(43), DOI: 10.3390/mca22040043.

[24]. Praynlin, E. and Latha, P. (2012). Estimating Development effort on Software Projects using ANFIS. In Proceedings of

International conference on Recent Trends in Computational Methods, Communication and Controls, 15 – 20
[25]. Mewada, K., Sinhal, A. and Verma, B. (2013). Adaptive Neuro-Fuzzy Inference System (ANFIS) Based Software Evaluation.

International Journal of Computer Science Issues, 10(5), 244 – 250.

[26]. Sharma, S. and Vijayvargiya (2020). Enhancing Software Project Effort Estimation using Neuro-Fuzzy System. Solid State
Technology, 63(6), 2986 – 2998

[27]. Prabhakar, K. and Dutta, M. (2013). Application of machine learning techniques for predicting software effort. Elixir Computer

Science and Engineering, 56, 13677 – 13682
[28]. Seref, B. and Barisci, N. (2014). Software Effort Estimation Using Multilayer Perceptron and Adaptive Neuro Fuzzy Inference

System. International Journal of Innovation, Management and Technology, 5(5), 374 – 377

[29]. Karimi, A. and Gandomani, T. (2021). Software development effort estimation modeling using a combination of fuzzy-neural
network and differential evolution algorithm International Journal of Electrical and Computer Engineering 11(1):707-715

[30]. Le, T., Quyet, T., Nguyen, T. and Thi, M, (2021). A New Method for Enhancing Software Effort Estimation by Using ANFIS-

Based Approach. A chapter in Industrial Networks and Intelligent Systems, DOI: 10.1007/978-3-030-77424-0_16

https://www.researchgate.net/journal/International-Journal-of-Electrical-and-Computer-Engineering-2088-8708
http://dx.doi.org/10.1007/978-3-030-77424-0_16

