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ABSTRACT: Finding accurately the amount of effort needed to develop any software is quite essential in 

software project management because inaccurate estimates affect both the software resources and the 

deliverables. A number of models have been developed for the estimation of the amount of effort required to 

develop a software. One of such models is the Constructive Cost Model (COCOMO), which was found to 

contain uncertain and imprecise inputs. To improve the COCOMO, an Adaptive Neuro-Fuzzy Inference System 

(ANFIS) was built by training the data acquired from PROMISE repository – NASA COCOMO with ANFIS 

back propagation and hybrid algorithm using MATLAB R 2017. This was done after Principal Component 

Analysis (PCA) was employed to reduce the dimensionality of the datasets from 23 to 6. With 6 attributes, the 

datasets were trained on the back propagation learning rule and the hybrid learning rule. It was revealed that 

the hybrid learns faster from epoch 70 and above. The performance of the outputs of the ANFIS algorithms was 

evaluated using Mean Magnitude Relative Error (MMRE) and Root Mean Square Error (RMSE). The results 

show that the Hybrid model has the least MMRE and RMSE of 31.4829 and 0.00000187 respectively, which is a 

confirmation that ANFIS hybrid learning performs better than ANFIS Back Propagation methods in terms of 

training convergence, reduced error and performance. 

KEYWORDS: Software Development Effort, ANFIS Back Propagation, Hybrid Learning Algorithm, 

COCOMO 
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I. INTRODUCTION 
In software project management, cost estimation is used to measure the success of any software project 

[1]. Software development cost estimation guides in the prediction of the likely amount of effort, time and 

staffing required in building a software system [2] and is one of the most important activities, with a critical 

role, in software project management process [3].  

Software development effort estimation is defined as a set of tasks that should be performed in order to 

derive some estimates, which are usually expressed in terms of hours and money [4]. It is the process of finding 

out the exact effort required to develop or maintain a software [5].  

Estimating the cost or the effort in person-months required in developing any software project 

accurately is very essential at the early stages of the software development life cycle (SDLC) [6]. This accurate 

prediction helps investors in software projects and their customers to know the total investment needed for the 

project as well as the project schedule. This is the reason many organizations that are involved in software 

projects usually estimate the resources, effort and time needed to satisfactorily complete the project and hand it 

over to the client as scheduled [7]. 

With inaccurate estimation figures, it becomes almost impossible to thoroughly plan, monitor and 

control a software project [8] and this can have adverse consequences on project resources [6]. According to the 

result of the research conducted by the International Society of Parametric Analysis (ISPA) [9] and the Standish 

Group International [10], two thirds of software projects are not delivered on time and within budget; this is due 
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to incorrect estimation (in terms of project size, cost, needed staff etc) and inappropriate software and system 

requirements [6]. 

An accurate estimate of the software effort, cost and schedule is very important in managing financial 

issues and monitoring all the developmental activities and on-time delivery [1]. The ability to predict the cost or 

effort of a software project has a direct impact on the management decision as either to accept or reject the 

proposal to venture into such a project [3]. Accurate estimation of software resources is very challenging and as 

such many techniques have been investigated and proposed in the past decades with the aim of improving the 

accuracy of software estimation models [11], support project managers to elaborate budget, forecast iteration 

and define project plans [12] and also support software developers in performing several of their software 

development tasks.  

The techniques used in software effort estimation are categorized into three main groups: expert 

judgment, algorithmic models, and machine learning models [13]. In expert judgment group, the software 

project effort estimation depends on the expertise and experience of the estimator [14]. The expertise of the 

estimator is based on the problem domain the estimator is familiar with as well as the similarity index of the 

software projects in question with the estimator’s familiar historical projects.  

Algorithmic (parametric) models group use mathematical equations to predict software cost. These 

models are derived from statistical or numerical analysis of historical software project data [8]. Constructive 

Cost Model (COCOMO) is a parametric model; software size is the main input of these models. Linear and non-

linear regression equations can be used in parametric models [6]. The algorithmic estimation models are very 

simple and reliable but not so accurate. The categorical datasets cannot be estimated using parametric models 

[5]. Algorithmic models require inputs that are estimated accurately and with specific attributes. These inputs 

are not easy to get at the early stages of SDLC. Algorithmic models also have issues in predicting accurately the 

development cost and effort; the accuracy of such estimates is always very low due to availability of limited 

information at the early stages of software development. These limitations of the algorithmic models led to the 

exploration of the non algorithmic techniques, visualized through soft computing approaches [2]. 

Machine learning (nonparametric and non algorithmic) models group are based on nonlinear 

characteristics [11]; set of artificial intelligence techniques, such as artificial neural networks, genetic 

algorithms, regression trees, rule-based induction, analogy-based or case-based reasoning (CBR), and fuzzy 

logic etc [8]. Machine learning techniques have gained popularity in cost estimation of predictive models [3]. 

These models can be standalone models or models that work in conjunction with algorithmic models. Some 

non-standalone works include:  [15 -16] predicted software effort using Naïve Bayes, Logistic Regression and 

Random Forests; [17] investigated software development effort estimation using polynomial linear regression, 

ridge regression, decision trees, support vector regression, and Multilayer Perceptron. 

Unfortunately, the industry is plagued with unreliable estimates, and no effort estimation model has 

proven to be consistently successful at predicting software project effort in all situations [8]. Even with these 

several software development effort estimation models in place and their crucial impact on budgeting and 

project planning in the industry, software development effort estimation is still an open question in the field of 

software engineering [12]. This means that practitioners and researchers are yet to have an effective and widely 

acceptable approach for estimation and evaluation of software development effort; they still need to choose any 

approach that matches their domain and researches needs respectively. The adoption of an approach that does 

not fit their needs becomes questionable in realistic scenarios [12]. 

This work therefore compares software development effort models: COCOMO, Adaptive Neuro Fuzzy 

Inference System (ANFIS) Back Propagation and ANFIS Hybrid with 6 input parameters instead of traditional 

23 inputs used in literature. This comparison is yet to be done in literature. Datasets for COCOMO model was 

collected from Promise Repository and the number of input parameters in the dataset reduced using Principal 

Component Analysis (PCA). Fuzzy inference system was generated and trained using ANFIS Back Propagation 

methods and hybrid learning algorithms. The performance was evaluated using MMRE and RMSE. In Section 

2, related work, fuzzy logic model and ANFIS pseudo-code are presented. Section 3 presents the attributes used 

for software development effort prediction while section 4 discusses dimension reduction using Principal 

Component Analysis (PCA). Section 5 and 6 considers ANFIS training and performance evaluation 

respectively. The work is concluded in section 7.  

 

II. RELATED WORK 
COCOMO proposed a nonlinear relationship between the size of the project and estimated effort 

measured in person months [18]. With the advent of component based development and service oriented 

architecture, COCOMO model was improved to COCOMO II to include changes evidenced around code reuse, 

function points and other related changes. COCOMO II was also formulated with a nonlinear relationship 

between the size of the project and estimated effort. 
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ANFIS is a framework of a neuro-fuzzy model which adapts itself through learning. It is used to 

identify systems based on available data and its result is significant when used in modeling non-linear functions 

[19 – 22]. ANFIS model has the advantage of having both numerical and linguistic knowledge [23]. 

There are several COCOMO and ANFIS based software effort development models using NASA 

datasets in literature. [24] proposed the use of ANFIS for software effort estimation using COCOMO II datasets. 

The ANFIS was modeled for several type of membership functions like Gaussian curve, Difference of sigmoidal 

membership, Gaussian combination membership, Trapezoidal membership, Triangular membership functions 

etc. [25] designed an efficient software effort estimation model using ANFIS on COCOMO datasets and tested 

it to see how it performed. [1] used a Neuro-fuzzy model optimized with PSO to derive an improved software 

development effort estimation model using NASA dataset software project. The results of the optimization were 

trained using ANFIS to get an effort prediction. [26] carried out neuro-fuzzy computing through ANFIS using 

COCOMO and COCOMO II datasets by comparing the expected and the actual data. The results showed that 

ANFIS model can be efficiently used for estimating software development effort. 

ANFIS have been combined with other algorithms/models to estimate software development effort. 

Such models include Decision Tree and Artificial Neural Network [27], Multilayer Perceptron [28], Hybrid 

Particle Swarm Optimization [1], Naïve Bayes, Logistic Regression and Random Forests [16], Differential 

Evolution Algorithm [29], Functional Point Analysis [30]. It is also important to compare the two variants of 

ANFIS; back propagation and hybrid, which is the aim of this work. 

a. Fuzzy Logic Model for Software Development Effort Evaluation 

 

The fuzzy logic model for software development effort evaluation, shown in Figure 1, contains a knowledge 

base and processing stage. The knowledge base provides membership functions and the fuzzy rules needed for 

the process. Numerical crisp variables are the input of the system in the processing stage. These variables are 

passed through a fuzzification stage where they are transformed into linguistic variables, which become the 

fuzzy input of the inference engine. This fuzzy input is transformed by rules of the inference engine to fuzzy 

output. These linguistic results are then changed by a defuzzification stage into numerical values that becomes 

the output of the system. 

 

Figure 1: Fuzzy Logic Model for Software Development Effort Evaluation 

b. Pseudo-Code of ANFIS Evaluation 

Begin:  

Step I: Determine the inputs of the model;  

Collect datasets;  

Divide the datasets into: Training and Testing (for evaluating the validity of the estimated model).  

Step II: Generate ANFIS model; 

[Define Number of Membership functions] numMFs;  
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[define type of Membership functions] mfType;  

[define Number of epoch] epoch_n;  

[Generate Fuzzy Inference System structure from data using grid partition] in_fis=genfis1 (trnData, numMFs, 

mfType);  

[Training routine for Sugeno-type Fuzzy Inference System (uses a hybrid learning algorithm)] out_fis= anfis 

(trnData,in_fis,epoch_n);  

 

Step III: Evaluate the value of Development Time;  

For each individual test data  

For i=1 to total test data  

[Evaluate the value of Development Time]  

dt(i)= evalfis(inpData,fis);  

Next i;  

 

Step IV: Evaluate the Value of MRE and MSE from result obtained in step III;  

For MRE and MSE of each individual test data  

For i = 1: to total test data  

mre(1,i)=abs((Actual dt(i)-dt(i))/Actual  

dt(i));  

   Next i;   

 

Step V: Evaluate the Value of MMRE and PRED from result obtained in step IV; 

For MMRE and PRED of each individual test data  

Initialize mmre =0, pred =0;  

For i = 1: to total test data  

mmre = mmre+mre(i);  

IF (mre (i) <=.25)  

pred =pred+1;  

EndIF 

Next i;  

MMRE= (mmre/ (total test data))*100;  

PRED=pred/ (total test data);  

 

End: 

 

 

III. ATTRIBUTES USED FOR SOFTWARE DEVELOPMENT EFFORT PREDICTION 
The attributes are divided into NASA, COCOMO and modes of development constraints. They are described in 

Table 1 – 3. 

 

Table 1: NASA based attributes 

NASA ATTRIBUTES DESCRIPTION 

Uniqueid Defined as numbers to identify each unique project. The numbers are not continuous since the 

records are a subset of another NASA database. 
Forg States whether it is a flight or ground system 

Center Used to define the NASA center. Examples include 1, 2,3, 4, 5, 6 

year  Defines the year of development 
Mode Defines the development mode, whether it is embedded, organic or semidetached 

 

Table 2:  COCOMO attributes 

COCOMO ATTRIBUTES DESCRIPTIONS 

RELY  Defined as the reliability of the system 
DATA Defined as the database size 

CPLX Measures Process complexity 
TIME Measures Time constraint for CPU 

STOR Measures Memory constraint 

VIRT Measures Machine volatility 
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TURN Measures Turnaround time 
ACAP Measures analysts capability 

AEXP Measures application experience 

PCAP Defines programmer’s capability 
VEXP Measures virtual machine experience of the developers 

LEXP Measures language experience of the programmers 

MODP Measures modern programing practices of the programmer 
TOOL Measures the programmer’s use of software tools 

SCED Measures schedule constraint 

 

Table 3: Modes of Development Constants 

Mode A B C D 

Organic 2.4 1.05 2.5 0.38 
Semi-detached 3 1.12 2.5 0.35 

Embedded 3.6 1.20 2.5 0.32 

 

Table 4 shows the ratings (numeric values) of the COCOMO effort attributes (multipliers) and their correlation 

with more effort. 

 

Table 4: COCOMO Attributes: Ratings and Correlation 
Effort 

Attributes 

Ratings(Numeric Values) Correlation with 

more Effort Very 

Low 

Low Nominal High Very 

High 

Extra 

High 

ACAP 1.46 1.19 1.00 0.86 0.71  Positive 

PCAP 1.42 1.17 1.00 0.86 0.70  Positive 

AEXP 1.29 1.13 1.00 0.91 0.82  Positive 

MODP 1.24 1.10 1.00 0.91 0.82  Positive 

TOOL 1.24 1.10 1.00 0.91 0.83  Positive 

VEXP 1.21 1.10 1.00 0.90   Positive 

LEXP 1.14 1.07 1.00 0.95   Positive 

SCED 1.23 1.08 1.00 1,04 1.10  No Correlation 

STOR   1.00 1.06 1.21 1.56 Negative 

DATA  0.94 1.00 1.08 1.16  Negative 

TIME   1.00 1.11 1.30 1.66 Negative 

TURN  0.87 1.00 1.07 1.15  Negative 

VIRT  0.87 1.00 1.15 1.30  Negative 

RELY 0.75 0.88 1.00 1.15 1.40  Negative 

CPLX 0.70 0.85 1.00 1.15 1.30 1.65 Negative 

 

The COCOMO software cost model measures effort in calendar months of 152 hours (development and 

management hours included).  COCOMO assumes that the effort grows more than linearly on software size; that 

is: 

𝑝𝑒𝑟𝑠𝑜𝑛 𝑝𝑒𝑟 𝑚𝑜𝑛𝑡ℎ𝑠 =  𝐴 ∗  𝑆𝑖𝑧𝑒 𝑆𝑐𝑎𝑙𝑒𝐹𝑎𝑐𝑡𝑜𝑟   ∗   𝐸𝑓𝑓𝑜𝑟𝑡 𝑀𝑢𝑙𝑡𝑖𝑝𝑙𝑖𝑒𝑟                   (1) 

Size is the estimated size in KLOC, scale factor is the combined process factors, and Effort multiplier is the 

combined effort factors. The constant and the scale factor are domain-specific parameters and Effort Multiplier 

is the product of over a dozen effort multipliers.   

IV. DIMENSION REDUCTION 
Principal Component Analysis (PCA) was used to reduce the dimension of COCOMO 11 NASA 

dataset from 23-input feature vector to a 6-input feature vector. For design’s sake, the first two data points are 

used for reduction with only 15 inputs considered to aid in flawless computation. The mathematical principle 

behind dimension reduction is to find a vector that defines the surface to which we wish to project the data. 

The first eleven data point in the dataset used to illustrate the workings behind PCA is given in Table 5. 

 

Table 5: 15 COCOMO II sample for PCA 

1 1.15 0.94 1.15 1.00 1.00 0.87 0.87 1.00 1.00 1.00 1.00 0.95 0.91 1.00 1.08 

2 1.15 0.94 1.15 1.00 1.00 0.87 0.87 1.00 1.00 1.00 1.00 0.95 0.91 1.00 1.08 

3 1.15 0.94 1.15 1.00 1.00 0.87 0.87 1.00 1.00 1.00 1.00 0.95 0.91 1.00 1.08 

4 1.15 0.94 1.15 1.00 1.00 0.87 0.87 1.00 1.00 1.00 1.00 0.95 0.91 1.00 1.08 

5 1.15 0.94 1.15 1.00 1.00 0.87 0.87 1.00 1.00 1.00 1.00 0.95 0.91 1.00 1.08 

6 1.15 0.94 1.15 1.00 1.00 0.87 0.87 1.00 1.00 1.00 1.00 0.95 0.91 1.00 1.08 

7 1.15 0.94 1.15 1.00 1.00 0.87 0.87 1.00 1.00 1.00 1.00 0.95 0.91 1.00 1.08 
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8 1.15 0.94 1.15 1.00 1.00 0.87 0.87 1.00 1.00 1.00 1.00 0.95 0.91 1.00 1.08 

9 1.15 0.94 1.15 1.66 1.56 0.87 1.07 0.86 0.91 0.86 1.00 0.95 0.91 0.91 1.00 

10 1.00 0.94 1.15 1.00 1.00 0.87 0.87 0.86 0.82 0.70 1.00 0.95 1.00 1.00 1.00 

11 1.00 0.94 1.15 1.00 1.00 0.87 0.87 0.86 0.82 0.86 1.00 0.95 1.00 1.00 1.00 

 

After the calculation of the mean of the 15 cost drivers, the transpose matrix of the dataset, the estimation of the 

covariance and the correlation set matrix, the Eigen vector is shown in Table 6. 

 

Table 6: Eigen Vector of the Correlation Matrix

0.42 -0.14 0.02 -0.12 0.15 -0.03 -0.49 0.13 0.00 -0.34 0.41 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -0.71 -0.46 0.37 0.71 -0.71 -0.71 0.71

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.71 -0.46 0.37 0.71 -0.71 -0.71 0.71

0.37 0.25 0.17 0.11 0.12 -0.09 0.27 0.02 0.00 0.02 0.04 0.00 0.00 0.00 0.00

0.26 0.29 0.07 -0.17 -0.71 0.54 -0.10 -0.09 0.00 0.00 0.00 0.00 0.00 0.00 0.00

-0.11 -0.10 0.54 -0.38 0.11 0.04 0.03 -0.17 0.00 0.08 0.07 0.00 0.00 0.00 0.00

0.37 0.25 0.17 0.11 0.12 -0.09 0.27 0.02 0.00 -0.38 0.33 0.00 0.00 0.00 0.00

0.20 -0.44 -0.17 -0.23 -0.04 0.12 0.37 0.16 0.00 -0.16 -0.27 0.00 0.00 0.00 0.00

0.17 -0.38 0.15 0.25 -0.52 -0.57 -0.02 -0.39 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.09 -0.34 0.14 0.56 0.26 0.57 -0.02 -0.39 0.00 0.00 0.00 0.00 0.00 0.00 0.00

-0.11 -0.10 0.54 -0.38 0.11 0.04 0.03 -0.17 0.00 -0.08 -0.07 0.00 0.00 0.00 0.00

-0.15 -0.17 0.47 0.36 -0.22 0.05 -0.03 0.73 0.00 0.00 0.00 0.00 0.00 0.00 0.00

-0.42 0.14 -0.02 0.12 -0.15 0.03 0.49 -0.13 0.00 -0.34 0.41 0.00 0.00 0.00 0.00

-0.37 -0.25 -0.17 -0.11 -0.12 0.09 -0.27 -0.02 0.00 -0.36 0.36 0.00 0.00 0.00 0.00

0.20 -0.44 -0.17 -0.23 -0.04 0.12 0.37 0.16 0.00 0.16 0.27 0.00 0.00 0.00 0.00  

The coefficients of the eigenvectors serve as the regression coefficients of the 15 principal components (PC). 

For example, the first PC can be expressed by: 

𝑃𝐶1 = 0.42𝑅𝐸𝐿𝑌 + 0𝐷𝐴𝑇𝐴 + 0𝐶𝑃𝐿𝑋 + 0.37𝑇𝐼𝑀𝐸+. .−0.37𝑇𝑂𝑂𝐿
+ 0.20𝑆𝐶𝐸𝐷                                                                                                 (2)                  

For dimension reduction, the eigen vector can be rearranged in their descending order to see how each variance 

was accounted for by the eigen vector; this and some other important information is shown in Table 7. 

Table 7: Eigen value summary 

Eigen Value Percentage 

Composition 

Cumulative 

Percentage 

5.1849 34.57% 34.57% 

3.4028 22.69% 57.26% 

2.5140 16.76% 74.02% 

1.1960 7.97% 81.99% 

0.4576 3.05% 85.04% 

0.2837 1.89% 86.93% 

-0.0997 -0.67% 86.26% 

0.0606 0.40% 86.66% 

2.0000 13.33% 99.99% 

6.04E-16 4.03e-15% 99.99% 

-2.43E-16 -1.62e-15% 99.99% 

-3.14E-17 -2.09e-16% 99.99% 

-1.11E-17 -7.4e-17% 99.99% 

3.85E-18 2.57e-17% 99.99% 

-1.21E-32 -8.07e-32 99.99% 

Total = 15   

 

The corresponding bar chart for the data in Table 7 is depicted in Figure 2. 
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Figure 2: Variable Reduction Series from Eigen Values 

From the above chart, it can seen that the principal component determinant, which is the Eigen vector 

favors only  RELY, DATA, CPLX, TIME and AEXP based on their percentage composition. For design’s sake, 

PCA is used to reduce 15 dimensions in the original COCOMO II file to 5 dimensions for flawless 

computations; however, in the implementation using MATLAB, the 23 inputs is reduced to 6. 

V. ANFIS TRAINING 
The model was trained with 70% of the entire dataset and tested with 30% of the dataset. Figure 3 shows the 

distribution of training dataset. 

 
Figure 3:  ANFIS training dataset 

          The model training was carried out on different number of epochs: 10 epoch, 20 epoch, 25 epoch, 30 

epoch, 50 epoch, 70 epoch and 100 epoch. The ANFIS training result with different epoch values are presented 

in Figures 4 – 9. Figure 4 shows the ANFIS training error result at 10 epoch with a training error of 0.5732 and 

0.0079 for Back Propagation and Hybrid algorithm respectively. 
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Figure 4: Training Results for Epoch 10 (Back Propagation vs Hybrid) 

Figure 5 shows the ANFIS training with 20 epoch giving a training error of 0.5305 and 0.0063for Back 

Propagation and Hybrid algorithm respectively. 

 

    

Figure 5: Training result with 20 Epochs (Back Propagation vs Hybrid) 

 

Figure 6 is the ANFIS training result with 50 epochs giving a training error of 0.4966 and 0.0050 for Back 

Propagation and Hybrid algorithm respectively. 

 

 
Figure 6: Training result with 50 Epoch (Back Propagation vs Hybrid) 
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Figure 7 presents the training results at epoch of 60 with a training error of 0.4867 and 0.0048 for Back 

propagation and Hybrid algorithm respectively. At Epoch 60, BP algorithm converges while the Hybrid 

experienced a premature convergence. 

 

 

 

 

Figure 7: Training result with 60 Epoch (Back Propagation vs Hybrid) 

 

Figure 8 presents the training results at epoch of 70 with a training error of 0.4773 and 0.0045 for Back 

propagation and Hybrid algorithm respectively. Figure 9 shows the training results at Epoch 100. At Epoch 70, 

BP algorithm had converged already with some little divergence difference of 0.0094 but the Hybrid 

experienced a proper convergence from Epoch 70. 

 

 

Figure 8: Training result with 70 epochs (Back Propagation vs Hybrid) 

 

 
Figure 9: Training result with 100 epochs (Back Propagation (BP) vs Hybrid (HB)) 
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The effect of epoch on the training error is presented in Table 8. This suggests also that Hybrid performs better 

at Epoch 70.  

 

Table 8: ANFIS Training Errors 

Metric  Values 

Epoch 10 20 50 60 70 100 

       

BP Training Error 0.5732 0.5305 0.4966 0.4867 0.4773 0.4559 

       

HB Training Error 0.0079 0.0063 0.0050 0.0048 0.0045 0.0045 

The ANFIS training error plot is shown in Figure 10. 

 

 
Figure 10: ANFIS Training Error Plot 

 

In order to test the accuracy of the ANFIS model, 30% of the reduced dataset was used for model testing. The 

training error and validation error for each of the epoch is shown in Figure 11. 

 

 

 

 

 

 

 

 

 

 

 

Figure 11:  Training Error and Validation Error Plots 
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The effect of the epoch on the model testing is shown in Table 9 which presents the ANFIS testing error on the 

2 different ANFIS training models trained at different epochs.  

 

Table 9: ANFIS Testing Error 

Metric  Values 

Epoch 10 20 50 60 70 100 

       

Testing Error BP 0.64217 0.5991 0.56104 0.5491 0.5403 0.5160 

       

Testing Error HB 0.5735 0.2167 0.1892 0.1889 0.1877 0.12156 

The graph in Figure 12 compares the ANFIS model output and COCOMO output which is the actual effort 

(number of person-hours) required to develop software.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 12:  ANFIS Output and Real Output 

Table 10 is the result of prediction comparisons between COCOMO, HB ANFIS and BP ANFIS 

Models. The COCOMO Model is the actual software development effort. The Rel. DIFF column is the Relative 

Difference between the COCOMO Effort and ANFIS effort.  The result shows HB ANFIS prediction with less 

than 1% difference from the COCOMO effort, relative to other predictions.  

 

Table 10: Comparison of Predictions and COCOMO Model 

COCOMO Model HB ANFIS Model 
Rel. DIFF 

BP ANFIS Model 

2 2.02 
0.07% 

-1929.282 

2 2.02 
0.07% 

-1929.282 

2 2.02 
0.07% 

-1929.282 

8 0.33 
7.45% 

99.827 

8 6.02 
0.67% 

98.329 

11 11.74 
0.08% 

101.436 

12 132.81 
705.99% 

192.026 

18 20.62 
0.38% 

104.128 

24 23.91 
0% 

-50.582 

25 39.52 
7.58% 

110.623 

31 30.47 
0.02% 

107.388 
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36 32.73 
0.29% 

108.173 

36 47.59 
3.52% 

42.990 

38 69.03 
21.79% 

121.155 

42 36.19 
0.78% 

-286.710 

42 28.45 
4.09% 

-174.849 

48 79.63 
17.87% 

357.137 

48 47.25 
0.01% 

19.203 

48 61.54 
3.57% 

58.849 

50 42.71 
1.03% 

111.816 

60 59.22 
0.01% 

118.441 

60 48.31 
2.15% 

130.590 

60 90.62 
13.46% 

-142.057 

60 85.82 
9.8% 

162.348 

60 66.44 
0.67% 

327.549 

62 62.58 
0.01% 

541.649 

70 76.50 
0.59% 

456.794 

72 58.94 
2.22% 

-200.064 

72 72.83 
0.01% 

46.129 

72 19.67 
29.61% 

-54.742 

82 81.31 
0.01% 

427.410 

90 119.13 
8.18% 

160.002 

97 191.20 
59.26% 

378.720 

99 118.95 
3.72% 

156.979 

107 88.52 
2.91% 

273.722 

114 112.82 
0.01% 

-65.386 

118 115.30 
0.04% 

146.066 

118 109.08 
0.59% 

142.629 

120 132.64 
1.25% 

156.110 

155 168.91 
1.17% 

197.978 

170 166.78 
0.06% 

-105.737 

192 181.54 
0.54% 

-200.767 

210 128.47 
21.64% 

47.986 

215 321.99 
32.69% 

345.479 

239 245.30 
0.16% 

-627.327 

240 285.05 
6.81% 

140.486 

252 247.24 
0.09% 

326.412 

278 275.66 
0.02% 

167.714 

300 336.55 
3.73% 

302.057 

300 380.94 
14.97% 

245.872 

300 316.02 
0.79% 

176.975 

324 316.68 
0.16% 

-186.518 

353 316.02 
3.21% 

302.057 

360 343.26 
0.72% 

535.238 

360 364.58 
0.06% 

670.311 

370 359.86 
0.26% 

577.728 
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400 315.35 
12.08% 

847.459 

409 429.74 
0.95% 

169.447 

420 422.01 
0.01% 

789.459 

430 345.35 
11.24% 

303.532 

432 516.45 
11.15% 

830.974 

444 441.56 
0.01% 

713.286 

444 445.69 
0.01% 

380.968 

458 436.90 
0.88% 

107.264 

480 488.49 
0.14% 

414.503 

480 333.92 
23.37% 

355.971 

571 509.58 
4.99% 

480.314 

576 360.61 
33.06% 

614.676 

599 676.05 
6.91% 

745.243 

600 512.74 
8.47% 

635.196 

636 633.75 
0.01% 

532.145 

648 645.17 
0.01% 

655.504 

703 697.72 
0.04% 

807.428 

720 719.95 
0% 

726.577 

750 795.34 
2.2% 

644.248 

756 795.25 
1.69% 

868.471 

882 882.10 
0% 

908.801 

973 969.17 
0.01% 

1216.975 

1181 1178.06 
0.01% 

1385.985 

1200 1201.80 
0% 

1071.178 

1248 1254.66 
0.03% 

1125.642 

1350 1350.62 
0% 

1689.326 

1368 1372.02 
0.01% 

1469.094 

1646 1676.70 
0.5% 

2320.574 

1773 1741.64 
0.46% 

2187.276 

1925 1924.47 
0% 

1761.842 

2120 2107.53 
0.07% 

1744.086 

2400 2400.42 
0% 

2591.337 

2400 2399.25 
0% 

2270.225 

2460 2461.58 
0% 

2777.290 

4178 4179.06 
0% 

4834.174 

4560 4558.77 
0% 

5099.861 

8211 8210.53 
0% 

6608.818 

 

VI. PERFORMANCE EVALUATION 

Based on the conducted experiments, ANFIS model using Hybrid Training Model with six (6) inputs reduced by 

PCA gave better estimate than the Back Propagation Model with six (6) inputs reduced by PCA. The result of 

performance measures using MMRE and MSE for each of the training is shown in Table 11. 

 

Table 11: Performance Evaluation Results 

Measure BP ANFIS Model HB ANFIS Model 

MMRE 388.2579 31.4829 

MSE 0.000082 0.00000187 
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From Table 11, it is seen that Hybrid Model gives a better result than Back Propagation model.  

 

The MRE Performance Measure of Hybrid and Back Propagation were plotted. The plot shows that the 

Hybrid training guaranteed convergence more than BP training. In Figure 13, the high shoots between Epoch 10 

and Epoch 20, Epoch 60 and 90 were responsible for negative predictions. In some cases, the predictions 

appeared to be meaningful why others were not. This is where the least square method complements the back 

propagation algorithm to prevent large learning rate that may have occurred at the early epochs. 

 

 

 

 

 

 

 

 

 

 

 

Figure 13:  MRE Plot ANFIS BP 

 

In Figure 14, the least square method complements the large learning rate that occurred between epoch 10 and 

20. These learning rates, if large, affect the weights of neuron, so the least square updates parameters by 

minimizing the squared difference between observed data and desired data. At Epoch 20 the large learning rate 

was reduced by least-square hence ensuring convergence at Epoch 70. 

 

 

 

 

 

 

 

 

 

 

 

Figure 14 - MRE Plot ANFIS HB 
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VII. CONCLUSION 

Software development effort estimation is very essential in software project management because 

proper effort estimation aids in the prediction of required resources, time and personnel costs. As at present, no 

effort estimation model has proven to be consistently successful in the prediction of software development 

effort, employing other approaches and/or comparing the performance of existing approaches on different 

situations is still open to research. 

This work compares software development effort models: COCOMO, Adaptive Neuro Fuzzy Inference 

System (ANFIS) Back Propagation and ANFIS Hybrid. The result obtained shows that using the hybrid 

algorithm of ANFIS with a reduced input of 6 perform better than the COCOMO and the back propagation 

model while using both 23 and 6 inputs. The performance evaluation reveals that hybrid training model is more 

efficient and stable in terms of reduced error. 

To avoid underestimation or overestimation of software development effort, which can result in 

catastrophic effect during software planning, many models and approaches have been proposed; with results 

suggesting that these models are all estimating software development effort accurately. It is quite obvious that 

these models may not be very successful in predicting software effort in certain situations given some other 

kinds of data. It is therefore pertinent to continue to compare different models using different datasets and 

situations all in an attempt to arrive at a generic software development effort estimation model. 

For further research, the COCOMO dataset used by many authors to implement software development 

effort estimates possesses some level of imprecision and therefore certain factors such as productivity of team 

size may be introduced into the model and compared with the two ANFIS algorithms (back propagation and 

hybrid) to see the one which performs best. 
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