
Quest Journals 

Journal of Software Engineering and Simulation  

Volume 9 ~ Issue 10 (2023) pp: 11-21 

ISSN(Online) :2321-3795 ISSN (Print):2321-3809  

www.questjournals.org  

 

 

 

*Corresponding Author:  Tyler Fu                                                                                                              11 | Page 

Research Paper 

 

Predicting Crystal System of Cathode Materials in 

Lithium-Ion Batteries Using Machine Learning Models 
 

Tyler Fu 
Princeton International School of Mathematics and Science, NJ, USA 

 

ABSTRACT: The crystal system of a lithium-ion battery cathode can significantly impact its chemical 

properties. This study aimed to use data from The Materials Project to build a machine learning model to predict 

the crystal structure of a cathode. Statistical tests demonstrated a strong correlation between the crystal structure 

of a substance and its chemical properties. To develop this model, the dataset was randomly divided into the 

training set, which contains 80% of the data and the remaining 20% for testing, and an XGBoost decision tree 

model was then trained to predict the three major types of crystal structures (monoclinic, orthorhombic, and 

triclinic) of cathodes. Remarkably, the model achieved a prediction accuracy of 94%, surpassing previously 

reported benchmarks of 75% in another study. This research establishes the feasibility of predicting the crystal 

structure based on the chemical properties of materials. Additionally, the study not only identifies key features for 

accurate prediction but also enriches understanding of the relationship between crystal systems and different 

cathode materials. 
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I. INTRODUCTION 

Lithium-ion (Li-ion) batteries consist of three major parts: cathode, anode, and electrolyte. Each element 

engages in a redox reaction, in which certain reactants acquire electrons while others lose them. Functionally, the 

cathode acts as the oxidizing agent, seeking to grab electrons; conversely, the anode is the reducing agent, aiming 

to release electrons. The electrolyte, on the other hand, allows lithium ions to move between the cathode and 

anode. During the discharge process of a lithium-ion battery, positively charged lithium ions (Li+) travel from the 

anode to the cathode through the electrolyte [1]. The anode oxidizes lithium into lithium ions, which then bind to 

the cathode [2]. Simultaneously, electrons traverse from the cathode to the anode via a circuit, creating the flow 

of electric current. This study focuses on the structural aspects of the cathode within Li-ion batteries [1].  

 Li-ion batteries have many different types of cathodes that usually are crystals. A crystal is a repeating 

arrangement of atoms, and the smallest arrangement of atoms that can repeatedly produce a crystal structure is 

called a “unit cell”. There are 14 basic unit cells called Bravais lattices, falling within 7 main primitive crystal 

systems, shown in Table 3. The specific crystal system depends on factors like the distance between the corners 

of the unit cell and the angles between the edges of the unit cell [3]. Lithium ions can easily bind or unbind 

themselves from a crystal structure through the process of intercalation. Intercalation is one of the reasons lithium-

ion batteries can discharge and recharge many times (Layered Structures and Intercalation Reactions). The aim of 

lithium-battery cathodes is to have the lowest reduction potential possible – a substance’s tendency to get reduced 

– while maximizing the reduction potential of the anode because the difference in redox energies determines the 

voltage of the battery [4].  

The crystal system of a cathode significantly influences its electrochemical properties, directly impacting 

battery performance, such as capacity and voltage. The ability to accurately predict the crystal system is 

instrumental in estimating cathode performance for specific applications. Leveraging the capabilities of machine 

learning to handle complex data patterns and make accurate predictions, this study sets out to achieve its primary 

objective: to develop a machine-learning model capable of accurately predicting the crystal system of a lithium-

ion battery cathode based on the characteristics of the cathode material. The dataset employed in this study 

originates from The Materials Project, an open web-based platform with access to the physical and chemical 

properties of many materials.  

http://www.questjournals.org/
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II. METHOD 
2.1 Data  

 The dataset employed in this research originates from the Materials Project. The dataset comprises 339 

records corresponding to distinct cathode materials and contains 11 variables. These variables include material 

ID, chemical formula, space group, formation energy, energy above hull (eabovehull), band gap, number of sites 

(nsites), density, volume, hasbandstructure, and crystal system of each cathode material. Among the 11 variables, 

material ID was excluded from the analysis because it does not contribute to the substance’s properties. There was 

no evident missing data, and duplicated rows were thoroughly checked before and after removing the “material 

ID” column. Table 1 provides an overview of the remaining 10 columns within the dataset, along with their 

respective descriptions. Additionally, Table 2 presents randomly selected five rows from the dataset to offer a 

snapshot of the nature of the data.  

 

Table 1: Description of Variables in the Dataset 

Formula The chemical formula of the crystal, which is the ratio of the different elements in one unit cell 

Spacegroup Spacegroup notation describes the symmetry of an infinitely repeating lattice. 

The first letter is the Bravais lattice symbol. 
The numbers after the first letter describe the screw axis symmetry: rotation and translation. The first number, n, 

means rotation of 360 degrees divided by n, and the second number means translation by that number of unit cells. 

The last letter describes the glide plane symmetry: translation and reflection. The letter depends on the direction of 
the translation [5]. 

FormationEnergy The change in energy (electron volts or eV) when one unit cell of the substance is formed 

EAboveHull Energy above hull is the formation energy difference between a compound and its most stable form, in electron volts 

(eV) per atom [6] and [7]. Energy above the hull is useful in this project because many of the materials in the dataset 

have the same formula but different structures.  

BandGap The band gap is the minimum amount of energy (eV) to excite one electron from the valence orbital to the next highest 

unoccupied orbital, called the conduction orbital. The smaller the bandgap gets, the more conductive the substance 
is.  

Nsites The number of atoms inside one unit cell, including fractions of atoms shared with other unit cells. 

Density Density of the substance in grams per cubic centimeter. 

Volume Volume of a unit cell in cubic angstroms. 

HasBandstructure A band is a filled orbital in the atom. A band structure is a graph showing the allowed orbitals in a substance, including 
the conduction orbital (mentioned in the band gap) [8]. Some substances do not have an allowed conduction band, so 

they do not have a band structure [9]. 

Crystalsystem The crystal system is the shape of a unit cell. There are only three crystal systems in the data, monoclinic, triclinic, 

and orthorhombic, out of the seven main crystal systems shown in Table 3. 

 

Table 2:  Random Selection of Five Rows from the Dataset 

Material 
Id Formula 

Space 
group 

Formation 

Energy 
(eV) 

E Above 
Hull (eV) 

Band 
Gap (eV) Nsites 

Density 
(gm/cc) Volume 

Has 
Bandstructure Crystal System 

mp-

849394 Li2MnSiO4 Pc -2.699 0.006 3.462 16 2.993 178.513 TRUE monoclinic 

mp-

762762 LiFe2(SiO4)2 P1 -2.426 0.114 0 39 2.753 547.911 FALSE triclinic 

mp-

762828 LiMnSiO4 Pna21 -2.623 0.054 0.11 84 3.55 864.216 FALSE orthorhombic 

mp-
566680 Li2MnSiO4 P21nm -2.705 0 3.052 16 3.039 175.842 TRUE orthorhombic 

mp-

767709 Li2Mn3Si3O10 C2/c -2.747 0.016 2.578 36 3.334 421.286 TRUE monoclinic 
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Table 3: Seven Main Primitive Crystal Systems 

System Lengths and Angles Unit Cell Shape 

 

 

triclinic 

 

 

a≠b≠c and ∠bc≠∠ca≠∠ab 

 

 

 

monoclinic 

 

 

a≠b≠c, ∠bc=∠ab = 90o, and ∠ca ≠ 90o 

 

 

 

orthorhombic 

 

 

a≠b≠c and ∠bc=∠ca=∠ab = 90o 

 

 

 

rhombohedral 

 

 

a=a=a and ∠aa ≠ 90o 

 

 

 

hexagonal 

 

 

a=a≠c, ∠ca = 90o, and ∠aa = 120o 

 

 

 

tetragonal 

 

 

a=a≠c and ∠ca=∠aa = 90o 

 

 

 

cubic 

 

 

a=a=a and ∠aa = 90o 

 

Source: Chemistry LibreTexts  
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2.2 Exploratory data analysis 

Exploratory data analysis was the initial step to gain an understanding of the data. First, the number of 

unique variables and the number of entries for each variable were identified, and then the variables were divided 

into classes of categorical and numerical variables. In this dataset, the categorical variables are formula, 

spacegroup, hasbandstructure, and crystal system; however, hasbandstucture was coded to 0 and 1, representing 

false and true, respectively. The numerical variables are formation energy, volume, nsites, volume, energy above 

hull (eabovehull), and band gap. For each numerical variable, summary statistics were calculated, including the 

mean, standard deviation, minimum, maximum, 1st quartile, median, and 3rd quartile. This information is 

presented in Table 4. Similarly, for each categorical variable, the number of each unique value and its 

corresponding frequency was calculated. This information is also shown in Table 4. As part of the analysis, 

histograms were generated to compare the three crystal systems and hasbandstructure, depicted in Figures 1 and 

2. Figure 1 delineates that 65 crystals do not have a bandstructure, while 274 crystals have a bandstructure. The 

distribution of 139 monoclinic, 128 orthorhombic, and 72 triclinic crystals is also exhibited. Figure 2 provides 

visual representations of formation energy, eabovehull, bandgap, and hasbandstructure color-coded by the crystal 

system.   

 

Table 4: Summary Statistics of Numerical Variables and Categorical Variables 

 

 

 

 

 
 

 

 

Figure 1: Count Plot for Band Structure and Crystal System 
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Figure 2: Histograms of Numerical Variables Color-Coded by Crystal System 
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This comprehensive exploratory analysis offers a foundational insight into the dataset’s characteristics and sets 

the stage for subsequent analytic steps. 

 

2.3 Statistical Tests 

First, the Pearson correlation method tested the linear correlation between the numerical variables. The 

correlation coefficient ranges from -1, by which two variables make a straight line with a negative slope, indicating 

a negative linear relationship, to 1, by which two variables make a straight line with a positive slope, indicating a 

positive linear relationship. Figure 3 shows a correlation heatmap highlighting variable pairs with correlation 

coefficients above 0.4 or below -0.4 [10]. 

Next, a one-way analysis of variance [11] test was performed for each dependent variable on each 

independent variable one at a time. ANOVA compares the variance between and within the groups to determine 

if there is any statistically significant difference among the means of levels of independent variables. The variance 

between groups is represented by the ratio of the sum of squares between groups and degrees of freedom. The 

sum of squares between groups measures the variability between the groups, which is how far away each number 

in a group is from the overall mean of all the groups combined. The degrees of freedom for the sum of squares 

are the number of independent pieces of information in the test, and for the sum of squares between groups, the 

degrees of freedom is one less than the total number of groups in the test. The variance within variables is the 

ratio of the sum of squares within and degrees of freedom. The ratio of the variance between and variance within 

is called the F-value. The p-value signifies the probability of getting an F-value that is the same or more extreme 

than the observed F-value. The ANOVA test was conducted on each categorical variable compared with all the 

numerical variables, and the resulting p-values are recorded in Table 5. If the p-value was less than 0.05, the null 

hypothesis was rejected. The null hypothesis assumes no differences between the variables, and any difference 

observed is due to random chance. 

Lastly, Figure 4 displays two contingency tables comparing band structure and spacegroup against the 

three crystal systems. Each cell within the contingency table shows the percent of the specific combination of the 

two compared categories. 

 

Figure 3: Correlation Heatmap Between Numerical Variables 
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Table 5: P-Values from Various One-Way ANOVA Models 

 

 Crystal System Spacegroup Hasbandstructure Formula 

Formation Energy 0.98242 9.427552e-11 0.000244 1.058187e-190 

Energy Above Hull 0.11273 4.196027e-08 0.105841 5.690134e-23 

Band Gap 0.000073 0.000004 0.693063 1.690479e-64 

Nsites 0.000265 3.623385e-22 2.838366e-28 0.000102 

Density 0.015524 3.793224e-13 0.000488 1.601994e-20 

Volume 0.001541 5.157082e-26 3.818104e-30 0.000004 

Hasbandstructure 0.748037 0.000092 0 0.000014 

 
Figure 4 : Contingency Table of Band Structure and Spacegroup vs Crystal System 

 

In the correlation heatmap illustrated in Figure 3, nsites strongly correlates with volume with a coefficient 

of 0.98, and density and formation energy were weakly correlated. Moreover, band gap was negatively correlated 

with both formation energy and energy above hull; band structure was negatively correlated with nsites and 

volume. In Table 5, with the exception of crystal system versus formation energy and band structure versus band 

gap, most p-values lie below 0.05, which means they are all somewhat correlated. In the contingency tables 

displayed in Figure 4, the second plot is interesting because it shows that the crystal system strongly influences 

the spacegroup of a crystal because 100% of a certain spacegroup falls entirely in one crystal system. 

 
2.4 Preprocessing 

To prepare the data for the machine learning model, each chemical formula, spacegroup, and crystal 

system was encoded to a numerical number. Label encoding was applied for the output variable crystal system. 

Given the substantial cardinality of spacegroup and chemical formula, meaning numerous unique values, they 

were encoded differently. Spacegroup was frequency encoded, and a number was assigned based on the frequency 

of the certain spacegroup, and the formula was encoded using the CatBoost encoder. 
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2.5 Principal Component Analysis 

Principal component analysis (PCA) was adopted to condense the number of variables by combining a 

large number of original variables into a few new ones called principal components. Before initiating principal 

component analysis, all the data were normalized, ensuring that each column had a mean equal to zero and a 

standard deviation equal to one. At first, the data were reduced to two principal components. The proportion of 

variance explained, which is how well a principal component “explains” the dataset, was calculated for the two 

principal components [12]. The proportion of variance explained by the first principal component was about 

31.45%, and the proportion of variance explained by the second principal component was approximately 20.56%, 

totaling 52.01%. After that, the data were reduced to three principal components; the proportion of variance 

explained by the new third principal component was about 15.70%, totaling 67.71%, which was better. However, 

the principal components were not used in the final machine learning model to preserve as much information as 

possible. 
 

2.6 Machine Learning Model 

The machine learning model employed in this study utilized the XGBoost classifier, a decision tree-based 

algorithm in Python [13]. A decision tree entails a series of nodes and branches collectively classifying crystal 

systems. XGBoost leverages a feature called boosting, which creates decision trees sequentially so that each 

subsequent decision tree is designed to rectify errors made in the previous decision tree. Each decision tree 

contributes a bit to the prediction, so all the decision trees working together create an impactful machine learning 

model. XGBoost classifier is one of the most efficient machine learning algorithms, often outperforming most 

other models, such as logistic regression [14]. 

Before starting the machine learning, the output variable, the crystal system, was separated from the input 

variables. Then, 80% of the data were chosen randomly to be part of the training set, and the remaining 20% were 

for testing. Minmax scaler was adopted to normalize the training set, and the testing set was normalized 

individually. Hence, the mean was equal to zero, and the standard deviation was equal to one. After normalizing 

the data, an XGBoost classifier was trained on the scaled training data using the default parameters of XGBoost. 

Then, the machine learning model was tested on the testing data. 

After testing the model, a confusion matrix and a classification report were generated. A confusion matrix 

illustrates how many crystal systems the model predicted correctly and incorrectly, as shown in Figure 5 [15]. In 

the classification report, precision is the ability of the classifier to not label a positive case as negative; recall is 

the ability to predict positive cases correctly; f1-score is the weighted average of precision and recall; support is 

the actual number of positive cases; and accuracy is the percentage of true predictions [16]. Table 6 summarizes 

the classification report. Figure 6 presents a plot of the feature/variable importance, which is the frequency a 

feature was used in the decision tree. A variable with high cardinality can affect the feature importance plot. Thus, 

Figure 7 offers a different plot of feature importance based on the gain for each variable, reflecting their individual 

contributions to the model. Lastly, Figure 8 illustrates the initial four rows of the decision tree model. 

 

III. RESULTS 

 
Confusion matrix of prediction is presented in Figure 5, and classification report is presented in Table 6.   

Feature importance based on variable count and based on gain are presented in Figure 7 and 8. 

 

Figure 5: Confusion Matrix of Crystal System Predictions 
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Table 6: Classification Report of Crystal System Predictions 

 precision recall f1-score support 

monoclinic (0) 0.96 0.89 0.93 28 

orthorhombic (1) 0.89 0.96 0.93 26 

triclinic (2) 1.00 1.00 1.00 14 

accuracy   0.94 68 

macro average/ unweighted 
average 

0.95 0.95 0.95 68 

weighted average 0.94 0.94 0.94 68 

 
Figure 6: Feature Importance Based on Variable Count 

 
 

Figure 7: Feature Importance Based on Gain 
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Figure 8: The First Four Rows of the Decision Tree 

 
 
3.1 Discussion of Results 

 Based on the confusion matrix in Figure 5 and the classification report in Table 6, the model’s 

performance metrics range from 0.89 to 1.00. Notably, the model achieved an accuracy of 94%, surpassing the 

performance of a different study that achieved 75% accuracy [17]. 

The model excelled in predicting triclinic crystal systems, scoring 1.00 across all performance metrics 

related to triclinic crystals.  This could suggest that the model is overfitting, although the performance metrics for 

other crystal systems exhibited lower scores. Unfortunately, there was insufficient data for cross-validation tests 

to confirm or refute if the model was overfitting. 

According to the feature important plots, the most important feature was spacegroup. Spacegroup, which 

describes the symmetry of a crystal lattice, is probably very closely related to the crystal system. The close 

relationship between spacegroup and the crystal system was also seen in the contingency table (Figure 4), where 

a spacegroup corresponded uniquely to only one type of crystal system, or in other words, two different crystal 

systems could not have the same spacegroup. Additionally, density, band gap, formation energy, volume, and 

nsites were important features in predicting the crystal structure. 

 One limitation of this study was that encoding high cardinality categorical variables using a CatBoost 

encoder could induce overfitting because it may greatly increase the data's complexity. Comprehensive data can 

make it easier for the machine learning model to memorize the training data than to discern meaningful patterns 

that better represent real-world scenarios. A future solution to mitigate this is to incorporate more extensive 

datasets with additional information about lithium-ion battery cathodes. More data will help boost the accuracy 

of the machine learning model and prevent overfitting because there will be more possibilities, and meanwhile, 

allow cross-validation tests to reduce overfitting. Furthermore, employing an alternative ensemble method in 

XGBoost or a different machine learning model could improve performance.  

 

IV.  CONCLUSION 
In this study, a machine learning model was constructed to classify whether lithium-ion battery cathodes 

had a monoclinic, orthorhombic, or triclinic crystal system using data from the Materials Project. First, critical 

statistical values were extracted during exploratory data analysis, and correlation and analysis of variance were 

tested. Subsequently, all the data were encoded using CatBoost and label encoders. Then, the dataset was split 

into training and testing groups and normalized using a minmax scaler. An XGBoost classifier with default 

parameters was fitted to the training data and was tested with the test data. As a result, the XGBoost model 

performed exceptionally well, yielding an overall 94% accuracy rate. The model improves existing machine 

learning methods for predicting the crystal system of lithium-ion battery cathodes, and it holds the potential to be 

incorporated into real-world applications, offering valuable insights and facilitating informed decisions within the 

realm of lithium-ion battery cathode research and development. 
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