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I. Introduction. 
Cantor is referred to as the father of set theory. In his cardinal key axiom he stated that an element must 

belong to a set only once. However, as research grows, his theories could not address so many fundamental 

issues such as the hydrogen molecules in water, DNA strands among other reasons. Thus the emergence of  

multiset (mset for short ) which is a collection of objects in a set in which repetitions are allowed.  For the 

various applications of msets the reader is refered to article [1], [4,],  [7], [ 9], and [11]. It is observed from the 

survey of available literature on msets and applications that the idea of mset was hinted by R. Dedikind in 1888. 

The mset theory which generalizes set theory as a special case was introduced by Cerf et al.[2]. The term mset, 

as noted by Knuth [4] was first suggested by N.G de Bruijn in a private communication to him. Further study 

was carried out by Yager [14], Blizard [1]. Other researchers ([5], [7], [8]) gave a new dimension to the mset 

theory.  

Msets has been established as a generalised version of set [1,7,9,14] . Several authors have studied the 

structures of the classical sets under the generalised settings, such as: mset topological space [10]. The 

introduction of the concepts of relations, function, composition, and equivalence in msets context. [3], Tella and 

Daniel have considered sets of mappings between msets and studied about group and symmetric groups under 

mset perspective.  ([12], [13]) Nazmul et al. improved on Tella and Daniel’s work and added two axioms  [6].  

In this paper we present the study of monoid in mset context while we lay more emphasis on the closure of mset 

operation on multi monoid and that of its homomorphism. From the literatures, there may be some variations in 

the definition of monoid depending on the point of view of the different authors. However, in this paper we 

consider definitions in [15] and [16]. 

In addition to this section, we present some preliminary definitions in section two to make the paper 

self-contained and some fundamental results are presented in section three while the entire paper is summarized 

in section four. 

 

II. Preliminaries 
2.1 Definitions and notations 

Definition 2.1.1[15, 16]: Let 𝑆 be a set and µ: 𝑆 × 𝑆 → 𝑆 a binary operation that maps each ordered pair (𝑥, 𝑦) 

of 𝑆 to an element µ(𝑥, 𝑦) of 𝑆. The pair (𝑆, µ)(or just 𝑆, if there is no fear of confusion) is called a groupoid. 

The mapping µ is called the product of (𝑆, µ). We shall mostly write simply 𝑥𝑦 Instead of µ(𝑥, 𝑦). If we want to 

emphasize the place of the operation then we often write  𝑥. 𝑦. The element 𝑥𝑦(= µ(𝑥, 𝑦)) is the product of 𝑥 

and 𝑦 in 𝑆.   

Definition 2.1.2[15, 16]: A groupoid 𝑆 is a Semigroup if the operation µ is associative; for all 𝑥µ 𝑦µ𝑧 =
(𝑥µ𝑦)µ𝑧. Thus a semigroup is a pair (𝑆, µ) where 𝑆 is a non empty set and µ is its binary operation on µ which 

satisfied two axioms: 

(i) The closure property 

(ii) The associativity property.   
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Definition 2.1.3[15,16](Monoid): Let  𝑆(that is (𝑆, µ) ) be a semigroup. An element 𝑥 ∈ 𝑆 is a left identity of 𝑆 

if 𝑦 ∈ 𝑆: 𝑥µ𝑦 = 𝑦. Similarly, 𝑥 is right identity of 𝑆 if ∀ 𝑦 ∈ 𝑆: 𝑦µ𝑥 = 𝑦. If 𝑥 is both left and right identity of 𝑆, 

then 𝑥 is called an identity of 𝑆. A semigroup is a monoid if it has an identity.   

Definition 2.1.4[1]. An mset 𝐴 over the set  𝑋 can be defined as a function  𝐶𝐴: 𝑋 → ℕ ∪  0 , where ℕ =
 0,1,2, …   where the value  𝐶𝐴(𝑥) denote the number of times or multiplicity or count function of 𝑥  𝑖𝑛 𝐴 . For 

example, Let 𝐴 =  𝑥, 𝑥, 𝑥, 𝑦, 𝑦, 𝑦, 𝑧, 𝑧 , then 𝐶𝐴 𝑥 = 3, 𝐶𝐴 𝑦 = 3, 𝐶𝐴 𝑧 = 2. [𝐶𝐴 𝑥 = 0 ⇔ 𝑥 ∉ 𝐴]. If 

𝐶𝑀 𝑥 = 0 for all 𝑥 ∈ 𝑋. We denote the empty mset by ∅. Then 𝐶∅ 𝑥 = 0, ∀ 𝑥 ∈ 𝑋. ( 𝐶𝐴 𝑥 > 0 ⇔ 𝑥 ∈ 𝐴)..If 
𝐶𝐴 𝑥 = 𝑛 then the membership of  𝑥 in 𝐴 can be denoted by 𝑥 ∈𝑛 𝐴, meaning 𝑥 belong to 𝐴 exactly 𝑛 times. 

Presentation of mset on paper work became a challenged as every researcher has his thought in that aspect. 

However the use of square brackets was adopted in ([1], [9],[11]) to represent an mset and ever since then it has 

become a standard. For example if the multiplicity of the elements 𝑥, 𝑦 and 𝑧 in an mset 𝑀 are 2,3 and 2 

respectively, then the mset 𝑀 can be represented as 𝑀 =  𝑥, 𝑥, 𝑦, 𝑦, 𝑦, 𝑧, 𝑧,  , others  put it like  𝑥, 𝑦, 𝑧 2,3,2 or 

 𝑥2, 𝑦3 , 𝑧2   or  𝑥2, 𝑦3, 𝑧2  𝑜𝑟  2 𝑥 , 3 𝑦 , 2 𝑧    depending on one’s  taste or expediencies. But for conveniences 

sake, curly bracket can be used instead of the square bracket. 

Definition 2.1.5[1]: The cardinality of a mset 𝑀 denoted  𝑀  or 𝑐𝑎𝑟𝑑(𝑀) is the sum of all the multiplicities of 

its elements given by the expression   𝑀 =  𝑐𝐴 𝑥 𝑥∈𝑋   

Note: An mset 𝑀 is said to be finite if  𝑀 < ∞. 

We denote the class of all finite msets 𝐴 over the set 𝑋 by 𝑀(𝑋). 

Definition 2.1.6[2]: Let 𝑀 be an mset drawn from a set 𝑋. The support set of 𝑀 denoted by 𝑀∗ is a subset of  𝑋  

given by  𝑀∗ =  𝑥 𝜖 𝑋: 𝐶𝑀 𝑥 > 0 . 𝑀∗ is also called root set.  

Definition 2.1.7[1](Equal msets): Two msets 𝐴, 𝐵 ∈ 𝑀(𝑋)  are said to be equal, denoted  𝐴 = 𝐵 if and only if 

for any objects 𝑥 ∈ 𝑋, 𝐶𝐴(𝑥) = 𝐶𝐵(𝑥). This is to say that  𝐴 = 𝐵 if the multiplicity of every element in 𝐴 is 

equal to its multiplicity in 𝐵 and conversely.  

Definition 2.1.8[1]: The exact multiplicity axiom: ∀𝑥∀𝑦∀𝑛∀𝑚 𝑥 ∈𝑛 𝑦 ∧ 𝑥 ∈𝑚 𝑦 → 𝑛 = 𝑚. In other words, 

the multiplicity with which an element belongs to a mset is unique. 

Definition 2.1.9[1] (Submultiset): Let  𝐴, 𝐵 ∈ 𝑀(𝑋). 𝐴 is a submultiset (submset for short) of 𝐵, denoted by 

𝐴 ⊆ 𝐵 𝑜𝑟 𝐵 ⊇ 𝐴, if 𝐶𝐴 𝑥 ≤ 𝐶𝐵 𝑥  𝑓𝑜𝑟 𝑎𝑙𝑙 𝑥 ∈ 𝑋. Also if  𝐴 ⊆ 𝐵 𝑎𝑛𝑑 𝐴 ≠ 𝐵, then 𝐴 is called proper submset 

of 𝐵 denoted by 𝐴 ⊂ 𝐵. In other words 𝐴 ⊂ 𝐵 if 𝐴 ⊆ 𝐵 and there exist at least an 𝑥 ∈ 𝑋  such that 𝐶𝐴 𝑥 <
𝐶𝐵 𝑥 . We assert that an mset 𝐵 is called the parent mset in relation to the mset 𝐴. 

Note that: For any two msets 𝐴, 𝐵 ∈ 𝑀(𝑋), 𝐴 = 𝐵  if and only if 𝐴 ⊆ 𝐵 and. 𝐵 ⊆ 𝐴. 

Definition. 2.1.10[1]: (Regular or Constant mset): An mset𝐴  over the set 𝑋 is called regular or constant if all its 

elements are of the same multiplicities, i.e for any 𝑥, 𝑦 ∈ 𝐴, 

 𝑥 ≠ 𝑦 ⇒ 𝐶𝐴 𝑥 = 𝐶𝐴 𝑦 . 

Definition 2.1.11: [9] (⋀ and ⋁ notations): The notations ⋀ and ⋁ denote the minimum and maximum operator 

respectively, for instance;  

𝐶𝐴 𝑥 ⋀𝐶𝐴 𝑦 = 𝑚𝑖𝑛 𝐶𝐴 𝑥 , 𝐶𝐴 𝑦   𝑎𝑛𝑑 𝐶𝐴 𝑥 ⋁𝐶𝐴 𝑦 = 𝑚𝑎𝑥 𝐶𝐴 𝑥 , 𝐶𝐴 𝑦  . 
2.2   Multiset operations. 

Definition 2.2.1[9] (msets union): Let 𝐴, 𝐵 ∈ 𝑀(𝑋). The union of  𝐴 𝑎𝑛𝑑 𝐵 denoted 𝐴 ∪ 𝐵 is the mset defined 

by   𝐶𝐴∪𝐵 𝑥 =  𝐶𝐴 𝑥 ⋁𝐶𝐵 𝑥   ∀ 𝑥 ∈ 𝑋,  

Definition 2.2.2[9] (msets intersection) Let𝐴, 𝐵 ∈ 𝑀(𝑋).The intersection of two mset 𝐴 and 𝐵 denoted by 

𝐴 ∩ 𝐵, is the mset for which   

𝐶𝐴∩𝐵 𝑥 =  𝐶𝐴 𝑥 ⋀𝐶𝐵 𝑥   ∀ 𝑥 ∈ 𝑋. 

Definition 2.2.3[9] ( mset addition): Let 𝐴, 𝐵 ∈ 𝑀(𝑋). The direct sum or arithmetic addition of  𝐴 and 𝐵 

denoted by 𝐴 + 𝐵 or 𝐴⊎ 𝐵 is the mset defined by 

𝐶𝐴+𝐵 𝑥 = 𝐶𝐴 𝑥 + 𝐶𝐵 𝑥 ∀ 𝑥 ∈ 𝑋. 

Note that ∣𝐴 ⊎ 𝐵∣= ∣𝐴 ∪ 𝐵∣ + ∣𝐴 ∩ 𝐵∣. 
Definition 2.2.4[9] (mset difference): Let 𝐴, 𝐵 ∈ 𝑀(𝑋), then the difference of 𝐵 from 𝐴, denoted by 𝐴 − 𝐵 is 

the mset such that 𝐶𝐴−𝐵 𝑥 =  𝐶𝐴 𝑥 − 𝐶𝐵 𝑥  ⋁0, ∀ 𝑥 ∈ 𝑋. If 𝐵 ⊆ 𝐴, then 

𝐶𝐴−𝐵(𝑥) = 𝐶𝐴 𝑥 − 𝐶𝐵 𝑥 . 

It is sometimes called the arithmetic difference of 𝐵 from 𝐴. If 𝐵 ⊈ 𝐴 this definition still holds. It follows that 

the deletion of an element 𝑥 from an mset 𝐴 give rise to a new mset  𝐴′ = 𝐴 − 𝑥 such that 𝐶𝐴′ 𝑥 = (𝐶𝐴 𝑥 −
1)⋁0. 

Definition 2.2.5[8] (mset symmetric difference): Let 𝑋  be a set and 𝐴, 𝐵 ∈ 𝑀(𝑋)Then the symmetric 

difference, denoted  𝐴∆𝐵, is defined by   𝐶𝐴∆𝐵(𝑥) =  𝐶𝐴 𝑥 − 𝐶𝐵 𝑥  . 
Note that  𝐴∆𝐵 = (𝐴 − 𝐵) ∪ (𝐵 − 𝐴). 

Definition 2.2.6[8] (mset complement): Let 𝐺 =  𝐴1 , 𝐴2, … , 𝐴𝑛  be a family of finite msets generated from the 

set 𝑋. Then, the maximum mset 𝑍 is defined by 𝐶𝑍 𝑥 = 𝑚𝑎𝑥𝐴∈𝐺𝐶𝐴(𝑥) for all 𝐴 ∈ 𝐺 and 𝑥 ∈ 𝑋. The 

Complement of an mset  𝐴, denoted by 𝐴,  is defined: 
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𝐴 = 𝑍 − 𝐴 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡  𝐶𝐴  𝑥 = 𝐶𝑍 𝑥 − 𝐶𝐴 𝑥 , 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑥 ∈ 𝑋.  

Note that 𝐴𝑖 ⊆ 𝑍 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑖. 
Definition 2.2.7[8] (Multiplication by Scalar): Let  𝐴 ∈ 𝑀(𝑋), then the scalar multiplication denoted by 𝑏. 𝐴 is 

defined by 𝐶𝑏 .𝐴 𝑥 = 𝑏. 𝐶𝐴 𝑥 , 𝑎𝑛𝑑 𝑏 ∈  1,2,3, … . 
Definition 2.2.8[8] (Arithmetic Multiplication): Let 𝐴, 𝐵 ∈ 𝑀(𝑋), then the Arithmetic Multiplication denoted 

by 𝐴. 𝐵 is defined by  𝐶𝐴.𝐵 𝑥 = 𝐶𝐴 𝑥 . 𝐶𝐵 𝑥   ∀ 𝑥 ∈ 𝑋. 
Definition 2.2.9[7] (Raising to an Arithmetic Power): Let  𝐴 ∈ 𝑀(𝑋), then  𝐴 raised to power 𝑛  denoted by  𝐴𝑛  

is defined:  

𝐶𝐴𝑛  𝑥 =  𝐶𝐴 𝑥  
𝑛

 𝑓𝑜𝑟 𝑛 ∈ {0,1,2,3, … }. 

Theorem 2.2.10[19]: Let  X  be a set and let  𝐴 ∈ 𝑀(𝑋). Then  

(i) 𝐴∗ = 𝐴0. 

(ii) 𝐴𝑛  . 𝐴𝑚 = 𝐴𝑛+𝑚 , and  

(iii) (𝐴. 𝐵)𝑛 = 𝐴𝑛  . 𝐵𝑛  𝑓𝑜𝑟 𝑎𝑛𝑦 𝑛, 𝑚 ∈ {0,1,2, … } 

Theorem 2.2.11[19]: For any  𝐴 ≠ ∅ such that  𝐴 ∈ 𝑀(𝑋), then  (𝐴𝑛)∗ = 𝐴∗  for 𝑛 ∈ {0,1,2 … } 

Definition 2.3.12[19]: Let 𝑋 be a groupoid, and  𝐴 ∈ 𝑀(𝑋). 𝐴 is said to be a multi-groupoid (mgroupoid for 

short) if the following condition is satisfied. 

𝐶𝐴 𝑥𝑦 ≥ 𝐶𝐴 𝑥 ∧ 𝐶𝐴 𝑦 , ∀ 𝑥, 𝑦 ∈ 𝑋. 

We denote the class of all finite mgroupoids over 𝑋 by 𝑀𝐺𝑃(𝑋).  

Proposition 2.3.13:Let 𝐴 ∈ 𝑀𝐺𝑃(𝑋). Then 

(i) 𝐴∗ is a sub groupoid of 𝑋. 

(ii)  𝐴∗ ∈ 𝑀𝐺𝑃(𝑋). 

Definition 2.3.14[19]: Let 𝐴 ∈ 𝑀𝐺𝑃(𝑋), then 𝐴 is said to be a commutative mgroupoid if 

𝐶𝐴 𝑥𝑦 = 𝐶𝐴 𝑦𝑥   ∀ 𝑥, 𝑦 ∈ 𝑋. 

Commutative mgroupoid can also be called Abelian mgroupoid. 

Definition 2.3.15[19]: Let  𝐴 ∈ 𝑀𝐺𝑃(𝑋) an element 𝑎 ∈ 𝐴 is said to be cancellable if 

𝐶𝐴 𝑎𝑥 = 𝐶𝐴 𝑎𝑦 , 𝑎𝑛𝑑 𝐶𝐴 𝑥𝑎 = 𝐶𝐴 𝑦𝑎 , implies 𝐶𝐴 𝑥 = 𝐶𝐴 𝑦 .  

Definition 2.3.16[19]: Let  𝐴 ∈ 𝑀𝐺𝑃 𝑋 . Then 𝐴 is said to be cancellable if 𝑎 is cancellable for all    𝑎 ∈ 𝐴.. 

Definition 2.3.17[20]: Let mset  𝐴 ∈ 𝑀𝐺𝑃(𝑋), then 𝐴 is said to be a semi –multigroup (semi-mgroup for short) 

if 𝑋 is a semi-group. 

We denote the class of all finite semi-mgroups over 𝑋 by SMG(X). 

Clearly 𝑆𝑀𝐺(𝑋) ⊂ 𝑀𝐺𝑃(𝑋). 

Theorem 2.3.18[20]: Let 𝑋 be a semi-group and 𝐴 ∈ 𝑆𝑀𝐺(𝑋). Then 

(i) 𝐴∗ is a sub semi-group of 𝑋 and 

(ii) 𝐴∗ ∈ 𝑆𝑀𝐺(𝑋) 

Theorem 2.3.19[20]: Let 𝑋 be a semi-group and let 𝐴, 𝐵 ∈ 𝑆𝑀𝐺(𝑋), Then 

(i) 𝐴 ∩ 𝐵 ∈ 𝑆𝑀𝐺(𝑋). 

(ii) 𝑘. 𝐴 ∈ 𝑆𝑀𝐺(𝑋), 𝑘 ∈  1,2 … .   
(iii) 𝐴. 𝐵 ∈ 𝑆𝑀𝐺(𝑋) 

(iv)𝐴𝑛 ∈ 𝑆𝑀𝐺 𝑋 , 𝑛 ∈  0,1,2, …   
(v) 𝐴𝜊𝐵 ∈ 𝑆𝑀𝐺(𝑋) 

Definition 2.3.20[20]: Let  𝐴 ∈ 𝑆𝑀𝐺(𝑋) and let 𝐵 be a submset of 𝐴. Then 𝐵 can be said to be a sub mgroupoid 

of 𝐴, if 𝐵 ∈ 𝑆𝑀𝐺(𝑋). 

Definition 2.3.21[20]: Let  𝐴 ∈ 𝑆𝑀𝐺(𝑋) an element 𝑎 ∈ 𝐴 is said to be cancellable semi-mgroup if it is 

cancellable mgroupoid.  

Definition 2.3.22[20]: Let  𝐴 ∈ 𝑆𝑀𝐺 𝑋 . Then  𝐴 is said to be cancellable semi-mgroup if it is cancellable 

mroupoid 

We denote the class of finite cancellable semi-mgroup as ℂ𝑆𝑀𝐺 𝑋 . That is, 

 ℂ𝑆𝑀𝐺 𝑋 = {𝐴 ∈ 𝑆𝑀𝐺(𝑋)/𝐴 is cancellable}.  

Definition 2.3.23[20]: Let  𝐴 ∈ 𝑆𝑀𝐺(𝑋), then 𝐴 is said to be a commutative semi-mgroup if it is a commutative 

mgroupoid. 

Commutative semi- mgroup can also be called Abelian semi-mgroup. 

We denote the class of finite commutative semi-mgroup as 𝐶𝑆𝑀𝐺 𝑋 . That is, 

 𝐶𝑆𝑀𝐺 𝑋 = {𝐴 ∈ 𝑆𝑀𝐺(𝑋)/𝐴 is commutative}.  

Theorem 2.3.24[20]: Let 𝐴, 𝐵 ∈ 𝑆𝑀𝐺(𝑋) such that 𝐴 and 𝐵 are commutative and cancellative. Then the 

following expressions are commutative and cancellative: 

(i) 𝐴 ∩ 𝐵 

(ii) 𝐴 ∪ 𝐵 

(iii) 𝐴 + 𝐵 
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(iv) 𝐴 − 𝐵 

(v) 𝐴∆𝐵 

(vi) 𝐴 ∙ 𝐵 

(vii) 𝑘𝐴, 𝑘 ∈  1,2,3, …   
(viii) 𝐴𝑛 , 𝑛 ∈  0,1,2, …  
(ix) 𝐴𝑜𝐵 

Theorem 2.3.25[20]:Let 𝐴, 𝐵 ∈ ℂ𝑆𝑀𝐺 𝑋  and 𝐴, 𝐵 ∈ 𝐶𝑆𝑀𝐺 𝑋 . Then the following are both satisfied 

(i) 𝐴 ∩ 𝐵 ∈ ℂ𝑆𝑀𝐺(𝑋) and 𝐴 ∩ 𝐵 ∈ 𝐶𝑆𝑀𝐺(𝑋). 

(ii) 𝑘. 𝐴 ∈ ℂ𝑆𝑀𝐺(𝑋) and 𝑘. 𝐴 ∈ 𝐶𝑆𝑀𝐺(𝑋), 𝑘 ∈  1,2 … .   
(iii) 𝐴. 𝐵 ∈ ℂ𝑆𝑀𝐺(𝑋) and 𝐴. 𝐵 ∈ 𝐶𝑆𝑀𝐺(𝑋). 

(iv) 𝐴𝑛 ∈ ℂ𝑆𝑀𝐺 𝑋  and 𝐴𝑛 ∈ 𝐶𝑆𝑀𝐺 𝑋 , 𝑛 ∈  0,1,2, …   
(v) 𝐴𝜊𝐵 ∈ ℂ𝑆𝑀𝐺(𝑋) and 𝐴𝜊𝐵 ∈ 𝐶𝑆𝑀𝐺(𝑋) 

Theorem 2.3.26[20]: ℂ𝑆𝑀𝐺 𝑋 = 𝐶𝑆𝑀𝐺(𝑋). 

 

III. mset monoid. 
Definition 3.1.1: An mset  𝐴 ∈ 𝑆𝑀𝐺(𝑋) is said to be a multimonoid (mmonoid for short). If  

(i) 𝑋 is a monoid and 

(ii) 𝐶𝐴 𝑒 ≥ 𝐶𝐴 𝑥 ∀ 𝑥 ∈ 𝑋. 
Where 𝑒 is the identity element in  𝑋. 

For example, the mset 𝐴 =  0,1,2 3,2,1 over the given additive semigroup 𝑋 = 𝑍3 =  0,1,2  is an mmonoid. 

Let the class of all finite mmonoids over the monoid 𝑋 be denoted by 𝑀𝑀 𝑋  

such that 𝐴 ≠ ∅ ∀ 𝐴 ∈ 𝑀𝑀(𝑋) 

Definition 3.1.2: Let  𝐴 ∈ 𝑀𝑀 𝑋  and let  𝐵 be a submset of  𝐴. Then 𝐵 can be said to be a sub mmonoid of 𝐴, 

if 𝐵 ∈ 𝑀𝑀 𝑋 . 

Definition 3.1.3; Composition of mmonoid: Let  𝐴, 𝐵 ∈ 𝑀𝑀 𝑋 , then we call  

𝐴 ∘ 𝐵 the composition defined   

𝐶𝐴∘𝐵 𝑥 = ⋁ 𝐶𝐴 𝑦 ∧ 𝐶𝐵 𝑧 : 𝑦, 𝑧 ∈ 𝑋 ∋ 𝑦𝑧 = 𝑥  
Theorem 3.1.4: 𝑀𝑀 𝑋 ⊂ 𝑆𝑀𝐺 𝑋 . 

Proof:  It is straight forward from definition 3.1.1 

Remark: It is pertinent to note that just as from the classical point of view,   

𝑀𝑀 𝑋 ⊂ 𝑆𝑀𝐺 𝑋 ⊂ 𝑀𝐺𝑃 𝑋 . 

Proposition 3.1.5: Let 𝑋 be a monoid and  𝐴 ∈ 𝑀𝑀 𝑋 . Then 𝐴∗ is a sub monoid of  𝑋. 

Proof: Let 𝐴 ∈ 𝑀𝑀 𝑋 , from the above remark 𝐴 ∈ 𝑀𝐺𝑃 𝑋  and  𝐴∗ is a subgroupoid of the groupoid 

𝑋(theorem 2.3.13). 

But since  𝐴∗ ⊆ 𝑋 and  𝑋 is a semi-group, we have  𝐴∗ a semi-group.                                        (1) 

Now we show that  e ∈ 𝐴∗. That is since    𝐶𝐴 𝑒 ≥  𝐶𝐴 𝑥 , ∀ 𝑥 ∈ 𝑋(by hypothesis). 

𝐶𝐴 𝑥 > 0, for some 𝑥 ∈ 𝑋, since 𝐴 ≠ ∅ 

Thus for such  𝑥, we have 𝐶𝐴 𝑒 ≥  𝐶𝐴 𝑥 > 0. 

In particular 𝐶𝐴 𝑒 > 0 i.e  𝑒 ∈  𝐴∗             (2) 

Now from (1) and (2) above we have 𝐴∗ a submonoid. 

Proposition 3.1.6: Let 𝐴 ∈ 𝑀𝑀 𝑋 , then 𝐴∗ ∈ 𝑀𝑀 𝑋 .  

Proof: Let 𝐴 ∈ 𝑀𝑀 𝑋 . We need show that  𝐴∗ ∈ 𝑀𝑀 𝑋 . But  𝐴 ∈ 𝑀𝐺𝑃 𝑋 (theorem 2.3.13) 

Thus 𝐴∗ ∈ 𝑀𝐺𝑃 𝑋 (see [19]). But 𝑋 is a semi-group. We have  𝐴∗ ∈ 𝑆𝑀𝐺 𝑋                           (1) 

Now since 𝑥 ∈ 𝐴, 𝐶𝐴 𝑥 > 0 and 𝐶𝐴 𝑒 ≥  𝐶𝐴 𝑥  ∀ 𝑥 ∈ 𝑋 (by hypothesis) 

Since  𝑒 ∈  𝐴∗ (proposition 3.1.5) 

Then  𝐶𝐴∗ 𝑒 = 1. But for all 𝑥 ∈ 𝑋, 𝐶𝐴∗ 𝑥 =  0,1  
Thus 𝐶𝐴∗ 𝑒 ≥ 𝐶𝐴∗ 𝑥  is valid 

In particular 𝐴∗ ∈ 𝑀𝑀 𝑋 . 

3.2  Closure of mset operations on mmonoid. 

Proposition 3.2.1: Let 𝐴, 𝐵 ∈ 𝑀𝑀 𝑋 , Then  

(i) 𝐴 ∩ 𝐵 ∈ 𝑀𝑀 𝑋 . 

(ii) 𝑘. 𝐴 ∈ 𝑀𝑀 𝑋 , 𝑘 ∈  1,2 … .   
(iii) 𝐴. 𝐵 ∈ 𝑀𝑀 𝑋  

(iv) 𝐴𝑛 ∈ 𝑀𝑀 𝑋 , 𝑛 ∈  0,1,2, …  
(v) 𝐴𝜊𝐵 ∈ 𝑀𝑀 𝑋  

Proof: (i)  Given that 𝐴, 𝐵 ∈ 𝑀𝑀(𝑋), then 𝐴, 𝐵 ∈ 𝑆𝑀𝐺(𝑋) 

 and 𝐴 ∩ 𝐵 ∈ 𝑆𝑀𝐺(𝑋) (theorem 2.3.19). 

Now we show that 𝐶𝐴∩𝐵 𝑒 ≥  𝐶𝐴∩𝐵 𝑥  ∀ 𝑥 ∈ 𝑋.  
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And 𝐶𝐴∩𝐵 𝑒 = 𝐶𝐴 𝑒 ⋀𝐶𝐵 𝑒 (by definition) 

But 𝐶𝐴 𝑒 ≥  𝐶𝐴 𝑥  ∀ 𝑥 ∈ 𝑋 and 𝐶𝐵 𝑒 ≥  𝐶𝐵 𝑥  ∀ 𝑥 ∈ 𝑋. (by hypothesis) 

 Therefore 𝐶𝐴∩𝐵 𝑒 = 𝐶𝐴 𝑒 ⋀𝐶𝐵 𝑒 ≥ 𝐶𝐴 𝑥 ⋀𝐶𝐵 𝑥 = 𝐶𝐴∩𝐵 𝑥 . 

Thus 𝐶𝐴∩𝐵 𝑒 ≥  𝐶𝐴∩𝐵 𝑥  ∀ 𝑥 ∈ 𝑋. 

In particular, 𝐴 ∩ 𝐵 ∈ 𝑀𝑀(𝑋). 

 (ii) Given that 𝐴 ∈ 𝑀𝑀 𝑋 , 𝑘 ∈ {1,2,3, … }, then 𝐴 ∈ 𝑆𝑀𝐺(𝑋) 

 and 𝑘. 𝐴 ∈ 𝑆𝑀𝐺(𝑋) (theorem 2.3.19). 

Now we show that  𝐶𝑘 .𝐴 𝑒 ≥  𝐶𝑘 .𝐴 𝑥  ∀ 𝑥 ∈ 𝑋.  

But 𝐶𝑘 .𝐴 𝑒 = 𝑘. 𝐶𝐴 𝑒 (by definition) 

And 𝐶𝐴 𝑒 ≥  𝐶𝐴 𝑥  ∀ 𝑥 ∈ 𝑋, (by hypothesis) 

Therefore 𝐶𝑘 .𝐴 𝑒 = 𝑘. 𝐶𝐴 𝑒 ≥ 𝑘. 𝐶𝐴 𝑥 = 𝐶𝑘 .𝐴 𝑥 . 

Thus 𝐶𝑘 .𝐴 𝑒 ≥  𝐶𝑘 .𝐴 𝑥  ∀ 𝑥 ∈ 𝑋. 

In particular, 𝑘. 𝐴 ∈ 𝑀𝑀(𝑋). 

 (iii) Given that 𝐴, 𝐵 ∈ 𝑀𝑀(𝑋), then 𝐴, 𝐵 ∈ 𝑆𝑀𝐺(𝑋) 

 and 𝐴. 𝐵 ∈ 𝑆𝑀𝐺(𝑋) (theorem 2.3.19). 

Now we show that 𝐶𝐴.𝐵 𝑒 ≥  𝐶𝐴.𝐵 𝑥  ∀ 𝑥 ∈ 𝑋.  

And 𝐶𝐴.𝐵 𝑒 = 𝐶𝐴 𝑒 . 𝐶𝐵 𝑒 (by definition) 

But 𝐶𝐴 𝑒 ≥  𝐶𝐴 𝑥  ∀ 𝑥 ∈ 𝑋 and 𝐶𝐵 𝑒 ≥  𝐶𝐵 𝑥  ∀ 𝑥 ∈ 𝑋. (by hypothesis) 

Therefore 𝐶𝐴.𝐵 𝑒 = 𝐶𝐴 𝑒 . 𝐶𝐵 𝑒 ≥ 𝐶𝐴 𝑥 . 𝐶𝐵 𝑥 = 𝐶𝐴.𝐵 𝑥 . 

Thus 𝐶𝐴.𝐵 𝑒 ≥  𝐶𝐴.𝐵 𝑥  ∀ 𝑥 ∈ 𝑋. 

In particular, 𝐴. 𝐵 ∈ 𝑀𝑀(𝑋). 

 (iv) Given that 𝐴 ∈ 𝑀𝑀(𝑋), then 𝐴 ∈ 𝑆𝑀𝐺(𝑋) 

 and 𝐴𝑛 ∈ 𝑆𝑀𝐺(𝑋) (theorem 2.3.19). 

Now we show that 𝐶𝐴𝑛  𝑒 ≥  𝐶𝐴𝑛  𝑥  ∀ 𝑥 ∈ 𝑋.  

But 𝐶𝐴𝑛  𝑒 = (𝐶𝐴 𝑒 )𝑛 (by definition) 

But  𝐶𝐴 𝑒 ≥  𝐶𝐴 𝑥  ∀ 𝑥 ∈ 𝑋. (by hypothesis) 

Therefore 𝐶𝐴𝑛  𝑒 = (𝐶𝐴 𝑒 )𝑛 ≥ (𝐶𝐴 𝑥 )𝑛 = 𝐶𝐴𝑛  𝑥 . 

Thus 𝐶𝐴𝑛  𝑒 ≥  𝐶𝐴𝑛  𝑥  ∀ 𝑥 ∈ 𝑋. 

In particular, 𝐴𝑛 ∈ 𝑀𝑀(𝑋). 

 (v) Given that 𝐴, 𝐵 ∈ 𝑀𝑀(𝑋), then 𝐴, 𝐵 ∈ 𝑆𝑀𝐺(𝑋) 

 and 𝐴𝜊𝐵 ∈ 𝑆𝑀𝐺(𝑋) (theorem 2.3.19). 

Now we show that 𝐶𝐴𝜊𝐵  𝑒 ≥  𝐶𝐴𝜊𝐵  𝑥  ∀ 𝑥 ∈ 𝑋.  And 

𝐶𝐴𝜊𝐵  𝑒 = ⋁ 𝐶𝐴 𝑒 ∧ 𝐶𝐵 𝑒 , since 𝑒. 𝑒 = 𝑒 . 
since 𝐶𝐴 𝑒 ≥  𝐶𝐴 𝑥   and 𝐶𝐵 𝑒 ≥  𝐶𝐵 𝑥  ∀ 𝑥 ∈ 𝑋(by hypothesis)  

Thus 𝐶𝐴𝜊𝐵  𝑒 = ⋁ 𝐶𝐴 𝑒 ∧ 𝐶𝐵 𝑒  ≥ ⋁ 𝐶𝐴 𝑥 ∧ 𝐶𝐵 𝑥  = 𝐶𝐴𝜊𝐵  𝑒 . 

Therefore  𝐶𝐴𝜊𝐵  𝑒 ≥  𝐶𝐴𝜊𝐵  𝑥  ∀ 𝑥 ∈ 𝑋. 

In particular,  𝐴𝜊𝐵 ∈ 𝑀𝑀(𝑋). 

Remark: Let  𝐴, 𝐵 ∈ 𝑀𝑀 𝑋 , Then 𝐴 ∪ 𝐵, 𝐴 + 𝐵, 𝐴 − 𝐵, 𝐴 ∆ 𝐵, Â need not be an mmonoid. 

3.3  Cancellability and Commutativity of mmoniod. 

Definition 3.3.1: Let  𝐴 ∈ 𝑀𝑀 𝑋 . Then  𝐴 is said to be cancellable mmonoid if it is cancellable semi-mgroup. 

We denote the class of finite cancellable mmonoid as ℂ𝑀𝑀 𝑋 . 

That is ℂ𝑀𝑀 𝑋 = {𝐴 ∈ 𝑀𝑀(𝑋) ∣ 𝐴 is cancellable}. 

Definition 3.3.2: Let 𝐴 ∈ 𝑀𝑀 𝑋 , then 𝐴 is said to be a commutative mmonoid if  commutative semi-mgroup. 

Commutative mmonoid can also be called Abelian semi-mgroup. 

Example:3.3.3: Let  𝑋 =  𝑒, 𝑎, 𝑏, 𝑐 , with 𝑎2 = 𝑏2 = 𝑐2 = 𝑒2 = 𝑒 𝑎𝑛𝑑 𝑎𝑏 = 𝑏𝑎 = 𝑐, 
𝑎𝑐 = 𝑐𝑎 = 𝑏, 𝑏𝑐 = 𝑐𝑏 = 𝑎. Where  𝑒 is the identity element. If  𝐴 =  𝑒, 𝑎, 𝑏, 𝑐 3,2,3,2  is an mset over X. 

Clearly 𝐴 is a commutative mmonoid. 

We denote the class of finite commutative mmonoid as 𝐶𝑀𝑀 𝑋 . 

That is 𝐶𝑀𝑀 𝑋 =  𝐴 ∈ 𝑀𝑀(𝑋)  𝐴 is commutative  
Note that since  ℂ𝑆𝑀𝐺 𝑋 = 𝐶𝑆𝑀𝐺(𝑋).( Theorem 2.3.26), and if 𝑋 is monoid then clearly  

ℂ𝑀𝑀 𝑋 = 𝐶𝑀𝑀(𝑋). We denote ℭ𝑀𝑀 𝑋 = ℂ𝑀𝑀 𝑋 = 𝐶𝑀𝑀(𝑋), the class of both cancellative and 

commutative mmonoid. 

Proposition 3.3.4: Let  𝐴 ∈ 𝑀𝑀(𝑋), then 𝐴 ∈ 𝐶𝑀𝑀 𝑋  If 𝑋 is commutative. 

Proof: Let 𝐴 ∈ 𝑀𝑀(𝑋) and 𝑋 be a commutative mmonoid, then for all 𝑥, 𝑦 ∈ 𝑋. 

We have  𝑥𝑦 = 𝑦𝑥. 

Thus   𝐶𝐴 𝑥𝑦 = 𝐶𝐴 𝑦𝑥 . (uniqueness of multiplicities)(Definition 2.1.8) 
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3.4  mset operation on commutative and cancellable mmonoids. 

Proposition 3.4.1: Let 𝐴, 𝐵 ∈ 𝐶𝑀𝑀(𝑋) and ℂ𝑀𝑀 𝑋 . Then the following expressions are both commutative 

and cancellative. 

(i) 𝐴 ∩ 𝐵 

(ii) 𝐴 ∪ 𝐵 

(iii) 𝐴 + 𝐵 

(iv) 𝐴 − 𝐵 

(v) 𝐴∆𝐵 

(vi) 𝐴 ∙ 𝐵 

(vii) 𝑘𝐴, 𝑘 ∈  1,2,3, …   
(viii) 𝐴𝑛 , 𝑛 ∈  0,1,2, …  
(ix) 𝐴𝑜𝐵 

Proof: From (i) to (x) The expressions are all commutative and cancellative (theorem 2.3.24 and proposition 

3.2.1 and the fact that 𝑋 is a monoid)   

Proposition 3.4.2: Let 𝐴, 𝐵 ∈ ℭ𝑀𝑀 𝑋 . Then  

(i) 𝐴 ∩ 𝐵 ∈ ℭ𝑀𝑀 𝑋 . 

(ii) 𝑘. 𝐴 ∈ ℭ𝑀𝑀 𝑋 , 𝑘 ∈  1,2 … .   
(iii) 𝐴. 𝐵 ∈ ℂ𝑀𝑀 𝑋  

(iv) 𝐴𝑛 ∈ ℭ𝑀𝑀 𝑋 , 𝑛 ∈  0,1,2, …   
(v) 𝐴𝜊𝐵 ∈ ℭ𝑀𝑀 𝑋  

Proof: 

(i) Since 𝐴, 𝐵 ∈ ℭ𝑀𝑀 𝑋 , then 𝐴, 𝐵 ∈ 𝑀𝑀 𝑋  (by definition) and  

𝐴 ∩ 𝐵 ∈ 𝑀𝑀(𝑋) (Proposition 3.2.1 (i)) 

But 𝐴 ∩ 𝐵 ∈ ℂ𝑀𝑀(𝑋) (Theorem 2.3.19) 

And  ℭ𝑀𝑀 𝑋 = 𝐶𝑀𝑀 𝑋 = ℂ𝑀𝑀 𝑋  

Thus 𝐴 ∩ 𝐵 ∈ ℭ𝑀𝑀 𝑋  

(ii) Since 𝐴 ∈ ℭ𝑀𝑀 𝑋 , then 𝐴 ∈ 𝑀𝑀 𝑋  (by definition) and  

𝑘𝐴 ∈ 𝑀𝑀(𝑋) (Proposition 3.2.1 (ii)) 

But 𝑘𝐴 ∈ ℭ𝑀𝑀 𝑋  (Theorem 2.3.19) 

And  ℭ𝑀𝑀 𝑋 = 𝐶𝑀𝑀 𝑋 = ℂ𝑀𝑀 𝑋  

Thus 𝑘. 𝐴 ∈  ℭ𝑀𝑀 𝑋 , 𝑘 ∈  1,2 … .   
(iii) Since 𝐴, 𝐵 ∈  ℭ𝑀𝑀 𝑋 , then 𝐴, 𝐵 ∈ 𝑀𝑀 𝑋  (by definition) and  

𝐴. 𝐵 ∈ 𝑀𝑀(𝑋) (Proposition 3.2.1 (iii)) 

But 𝐴. 𝐵 ∈  ℭ𝑀𝑀 𝑋  (Theorem 2.3.19) 

And  ℭ𝑀𝑀 𝑋 = 𝐶𝑀𝑀 𝑋 = ℂ𝑀𝑀 𝑋  

Thus 𝐴. 𝐵 ∈  ℭ𝑀𝑀 𝑋  

(iv) Since 𝐴 ∈  ℭ𝑀𝑀 𝑋 , then 𝐴 ∈ 𝑀𝑀 𝑋  (by definition) and  

𝐴𝑛 ∈ 𝑀𝑀(𝑋) (Proposition 3.2.1 (iv)) 

But 𝐴𝑛 ∈  ℭ𝑀𝑀 𝑋  (Theorem 2.3.19) 

And  ℭ𝑀𝑀 𝑋 = 𝐶𝑀𝑀 𝑋 = ℂ𝑀𝑀 𝑋  

Thus 𝐴𝑛 ∈  ℭ𝑀𝑀 𝑋 , 𝑛 ∈  0,1,2 … .   
(v) Since 𝐴, 𝐵 ∈  ℭ𝑀𝑀 𝑋 , then 𝐴, 𝐵 ∈ 𝑀𝑀 𝑋  (by definition) and  

𝐴𝜊𝐵 ∈ 𝑀𝑀(𝑋) (Proposition 3.2.1 (v)) 

But  𝐴𝜊𝐵 ℭ𝑀𝑀 𝑋  (Theorem 2.3.19) 

And  ℭ𝑀𝑀 𝑋 = 𝐶𝑀𝑀 𝑋 = ℂ𝑀𝑀 𝑋  

Thus  𝐴𝜊𝐵 ∈  ℭ𝑀𝑀 𝑋  

Note that 𝐴 ∪ 𝐵, 𝐴 + 𝐵, 𝐴 − 𝐵, 𝐴∆𝐵, and Â even though satisfied all the axioms buy need not be  cancellable 

and commutative mmonoids since 𝐴 ∪ 𝐵, 𝐴 + 𝐵, 𝐴 − 𝐵, 𝐴∆𝐵, and Â are not mmonoids(theorem 2.3.14) 

 

IV. Conclusion. 
We have introduced and studied the concepts of  monoid in multiset context (Multi Monoid). In the 

study, we have established the closure of some multiset operations  over the class of finite multi monoids 

(mmonoid). We have established that the root set of an mmonoid  is a sub monoid and sub mmonoid. Further 

studies reveals that the multiset operation expressions of cancellable and commutative generalised monoids are 

cancellable and commutative respectively while the closure of it need not hold on some operations in general.  
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