
Quest Journals 

Journal of Software Engineering and Simulation  

Volume 9 ~ Issue 6 (2023) pp: 31-42 

ISSN(Online) :2321-3795 ISSN (Print):2321-3809  

www.questjournals.org  
 

 

 

*Corresponding Author:  Nicko Sambrano Putra                                                                                        31 | Page 

Research Paper 
 

Implementation of Microservices to Improve Performance 

and Security of Train Search System in Pegipegi 

Application
 

1st Nicko Sambrano Putra  
Bina Nusantara University  

Jakarta, Indonesia nicko.putra001@binus.ac.id  

 
2nd Pieters Nicholas P.T.  

Bina Nusantara University  

Jakarta, Indonesia pieters.tambunan@binus.ac.id  

 
3rd Fathanal Achsan  
Bina Nusantara University  

Jakarta, Indonesia fathanal.achsan@binus.ac.id    

 
4th Dennis Rydarto Tambunan  

Dehasen University 

Bengkulu, Indonesia tambunandennis376@gmail.com

 

Abstract— The purpose of this research is to know the results of the Train Search implementation system used in 

the Pegipegi application to search train schedules. The methodology of Train Search system development uses 

Spring Boot-based Microservices with Event-Driven and Reactive Programming paradigms. The test results from 

the Train Search system with microservices are more structured. So that makes easier maintenance and further 

development. The new Train Search system has improved search speed performance from 9 seconds to 2 seconds 

and improved security against vulnerabilities from 17 types to 12. Besides that, monitoring data is also added 

from 6 types of monitoring data to 12. Then it can be concluded from this research is the implementation of 

microservices in the Train Search system can improve performance and security in the Pegipegi application. 

Keywords— Web Services, Scrum, Spring Boot, Reactive Programming, Microservices, Event-Driven 

Architecture 

 

Received 15 June, 2023; Revised 28 June, 2023; Accepted 30 June, 2023 © The author(s) 2023. 

Published with open access at www.questjournals.org 
 

I. INTRODUCTION 

Advances in technology can not be divided from the the rapid development of technology. The reason of 

technology is growing because the help of internet service factor, which is getting better and more reliable for 

these technological needs. It cannot be denied that at this time many enterprises are competing to create solutions 

for problems or needs that exist in the community or commonly called startup companies. 

Many of startup companies are trying to solve the problem in the community environment which aims 

to help the community to help more efficiently than before. One of the example is Pegipegi which is a startup 

based on growing online travel agencies in Indonesia. In the process of developing systems for the application of 

Pegipegi, there is a large system that runs to support all the needs of the application (monolith application), and 

the system is broken down into domains according to existing business requirements (service oriented 

architecture). Each of these domains is broken down into sub-domains according to existing business needs, one 

of which is the Train Search feature in the Train domain. 

Service migration is a very common thing in developing systems that have implemented SOA or 

Microservices. There were several factors that made the team decide to migrate existing services. Some of these 

http://www.questjournals.org/


Implementation of Microservices to Improve Performance and Security of Train Search .. 

*Corresponding Author:  Nicko Sambrano Putra                                                                                        32 | Page 

reasons, such as outdated technology, massive service improvisation or system paradigm changes. In addition to 

changing the technology ecosystem for the better, according to the standards set by the company. Migration is 

also carried out to improve security for the better. It is known that a security company named Snyk collected 

vulnerability data on the technology used by previous legacy systems. This is also one of the reasons for doing 

this migration. In addition, this migration also aims to remove legacy code (code that is obsolete and difficult to 

maintain) that exists in the Train domain. 

This research will explain the migration process of the Train Search feature in the legacy code to become 

a stand-alone service and implement the company's technology standards. So that with the migration of the Train 

Search feature from the legacy system, there will be microservices that support the Train Search feature, namely 

"Train Search" and "Train Search Worker". 

 

1.1. Problem Statement 

Based on the introduction above, broad problem formulation can be concluded as follows: 

1. How can service migration reduce the load on legacy systems? 

2. How can service migration improve performance in searching and managing train schedule data? 

3. How can service migration improve security in the Train Search feature? 

4. How can service migration improve monitoring of data search and availability by suppliers? 

 

1.2. Scope and Limitation 

When develope Train Search and Train Search Worker services, the author sets limitations on the discussion to 

be more focused, as follows: 

1. Development of this service only consists API endpoints that will be accessed by Pegipegi applications 

in the Train domain. 

2. Development of the Train Search and Train Search Worker services uses Spring Boot by implementing 

Reactive Programming paradigm. 

3. Database design uses PostgreSQL. 

4. Caching storage uses Redis. 

5. Message broker implementation uses Apache Kafka. 

 

1.3. Objective 

The objectives of this development are: 

1. Reducing features in the legacy Train system and developing the Train Search feature into a more 

independent service, also separating the responsibilities of the Train Search feature to be more clear, namely Train 

Search and Train Search Worker. 

2. Improve the performance in schedule searching by maximizing the available routes from suppliers. 

3. Improving security level in the Train Search service by reducing vulnerabilities that have Critical, High, 

and Medium level gaps, and avoiding vulnerabilities that have Low-level gaps. 

4. Maximizing other indicators in monitoring data, requests, and available responses . 

 

II. LITERATURE REVIEW 

2.1. Scrum 

Scrum is an incremental software development model that is a subset of agile software development. It 

is particularly useful in managing uncertain conditions and meeting tight deadlines. Scrum consists of three 

essential roles: product owner, development team, and scrum master. Its applications are widespread, ranging 

from developing educational mobile applications to integrating document management systems, among others. 

The effectiveness of Scrum depends on the expertise and proficiency of team members. Scrum entails certain risk 

factors that necessitate risk management approaches. Additionally, a comparison between Scrum and the 

traditional waterfall model is often discussed. Scrum's performance can be measured through various testing 

approaches, and it helps ensure timely delivery of all software components. Other benefits of Scrum include 

promoting a creative and productive workplace and enhancing business value. 

 

2.2. Software Architecture 

Software architecture is one of the points to describe the organization or structure of the system and 

describes its behavior. A system represents a collection of components that perform a particular function or set of 

functions. In short, software architecture provides a stable foundation upon which software can be built. Many 

architectural choices and trade-offs affect system quality, performance, maintainability, and overall success. 

Failure to consider common issues and long-term consequences can put your system at risk. There are some 

common architectural patterns and principles commonly used in modern systems. These are often called 



Implementation of Microservices to Improve Performance and Security of Train Search .. 

*Corresponding Author:  Nicko Sambrano Putra                                                                                        33 | Page 

architectural styles. Software system architectures are rarely confined to a single architectural style. Instead, the 

combination of styles often forms a complete system [12]. 

 

2.3. Monolith Architecture  

Typically, enterprise applications follow the classic three-tier model, consisting of user interface code 

running on the user's machine (such as HTML pages and JavaScript), server-side business logic responsible for 

handling HTTP requests, executing domain logic, retrieving and updating data from the database, and selecting 

and populating HTML views to be sent to the browser, and a database backend. The server-side application is a 

monolith, which means it is a single logical executable that runs as a single process in the application server's 

environment. When a new version of the application is deployed, it replaces the previous version in a single step, 

requiring only the copying of a single executable file to a designated folder. 

The monolithic architecture has the advantage of simplicity and ease of testing, deployment, debugging, 

and monitoring compared to other distributed applications. All data is retained in one database, and all internal 

communication is done via intra-process mechanisms, which is fast and does not suffer from problems typical to 

inter-process communication (IPC). It is a natural and first-choice approach for building an application, with all 

logic for handling requests running in a single process. The development team's preferred language can be used 

to structure the application into classes, functions, and namespaces. 

However, as the application grows and complexity, problems arise. Modifying the application's source 

becomes more challenging, and changes in one module may lead to unexpected behavior in other modules and a 

cascade of errors. The size of the monolith results in longer start-up time, slowing down development and 

becoming an obstacle to continuous deployment. As the application grows, it becomes harder for the development 

team to maintain a modular structure and ensure that changes related to a specific module only affect that module. 

Additionally, as the number of developers increases, unequal workforce utilization can lead to productivity losses 
[5]. 

 

2.4. Microservices Architecture 

The concept of microservices involves breaking down a business domain into small, self-contained, and 

independently deployable services, which are consistently bounded and autonomous. Netflix was one of the first 

companies to adopt microservices, as they began moving away from their monolithic architecture in 2009 before 

the term had even been coined. The term "microservice" was created by a group of software architects in 2011 

and was officially announced a year later at the 33rd Degree Conference in Kraków [6]. However, it wasn't until 

2014, when Lewis and Fowler wrote a blog post on the topic and Netflix shared their successful transition, that 

microservices started to gain popularity. The rise of container technologies such as Kubernetes and Docker have 

also helped to increase the momentum of this architectural style, especially in cloud-based environments. As a 

result, microservices have been widely adopted by global companies, including Amazon, eBay, Zalando, Spotify, 

Uber, Airbnb, LinkedIn, Twitter, Groupon, and Coca-Cola.  

 

2.5. REST API 

Representational State Transfer (REST) architectural style for distributed hypermedia systems, 

describing the software engineering principles guiding REST and the interaction constraints chosen to retain those 

principles, while contrasting them to the constraints of other architectural styles [7]. The constraints are defined in 

Roy Fielding's dissertation and include the following: 

1. Client-server architecture: The system must be designed to separate the client and the server in order to 

improve scalability and flexibility. 

2. Statelessness: The server must not store any client state between requests. Each request must contain all 

the information necessary for the server to understand it. 

3. Cacheability: Responses must be labeled as cacheable or non-cacheable. Caching improves performance 

and scalability by allowing clients to reuse responses. 

4. Layered system: The architecture must be designed to support a hierarchy of layers, where each layer 

provides a set of services to the layer above it. This improves scalability and flexibility. 

5. Uniform interface: The interface between client and server must be uniform, meaning that it must follow 

a set of standardized rules for communication. This includes the use of standard HTTP methods (GET, POST, 

PUT, DELETE) and standard media types (JSON, XML). 

6. Code on demand (optional): Servers can provide executable code to clients on demand, allowing for 

more dynamic and flexible applications. 

2.6. Event – Driven Architecture 

Event-Driven Architecture (EDA) is an architectural pattern that emphasizes the production, detection, 

consumption, and reaction to events that occur within a system or environment. In EDA, events are defined as 

significant occurrences that have an impact on the operation of a system, and the architecture is designed to enable 



Implementation of Microservices to Improve Performance and Security of Train Search .. 

*Corresponding Author:  Nicko Sambrano Putra                                                                                        34 | Page 

the system to respond to those events in a timely and efficient manner. The increasing number of connected 

devices and the rise of the Internet of Things (IoT) have been fueled by new business models and emerging 

applications. These aim to create systems that can manage large volumes of data generated daily, synchronize 

devices, and meet business requirements. To address this, EDA can be utilized as an event-driven backbone to 

process data from multiple applications in real-time. The proposed architecture is cost-effective and supports the 

Amazon Web Service (AWS) IoT core. Additionally, it can be implemented as free software [13]. 

 

2.7. Reactive Programming 
Reactive programming is becoming increasingly popular as a paradigm suitable for developing 

applications that are event-driven and interactive. This programming paradigm provides abstractions for 

expressing time-varying values and manages dependencies between them automatically, which makes it easier to 

develop such applications. Several approaches to reactive programming have recently been proposed, including 

those embedded in different programming languages such as Haskell, Scheme, JavaScript, Java, and .NET. This 

survey categorizes existing approaches to reactive programming along six dimensions, namely the representation 

of time-varying values, evaluation models, lifting operations, multidirectional, glitch avoidance, and support for 

distribution. The survey reveals that there are still open challenges in the field of reactive programming, such as 

limited support for multidirectional in tracking dependencies between time-varying values in only a few 

languages. Similarly, glitch avoidance, which is essential in reactive programming, cannot be ensured in 

distributed reactive programs using current techniques. 

 

2.8. Caching 

Caching is the process of temporarily storing data or HTML and images of a website to reduce bandwidth and 

server loading [10]. In simple terms, a cache is a technology that can help display data faster. Unlike cookies that 

record user traces and activities when surfing the internet, cache or caching can copy data soon. In order to be 

used. 

 

2.9. SQL 
Structured Query Language (SQL) is a special programming language that is used in data management 

in the Relational Database Management System (RDBMS). SQL consists of simple syntax in the form of 

instructions for manipulating data, these instructions are often called queries. The query language is used as 

standard query language for most Database platform as well as PostgreSQL 

 

2.10. Spring Boot 
Spring Boot is very helpful in the development of systems due to its open-source nature, comprehensive 

documentation, and comprehensive modules such as JDBC, ORM, Servlet, etc. Spring Boot supports the creation 

of RESTful web service applications, allowing programmers to combine it with other programming languages. It 

is a very popular choice for building web applications and microservices, due to its ease of use, powerful features, 

and seamless integration with other Spring modules and third-party libraries [14]. 

 

2.11. PostgreSQL 

PostgreSQL, which was developed by the Berkeley Computer Science Department, is a relational 

database management system (RDBMS) that is open-source and free to use. It is capable of processing data in 

tables that are interrelated with one another, making it suitable for applications that require more complex data 

processing. Over the last 30 years, PostgreSQL has become a powerful database with stable performance, high 

security, and a range of features. 

Due to its versatility and compatibility with popular programming languages like .NET, C/C++, C#, Java, 

JavaScript, PHP, Python, etc., PostgreSQL is widely used in web apps, mobile applications, and analytics 

applications. Using PostgreSQL as the database management system can make developing a web app easier since 

it eliminates compatibility issues. This is evidenced by the fact that many leading companies, including Apple, 

Cisco, Instagram, Netflix, Spotify, Uber, and more, use PostgreSQL. 

 

2.12. Apache Kafka 
Apache Kafka is a scalable publish-subscribe messaging system with its core architecture as a distributed 

commit log. It was originally built at LinkedIn as its centralized event pipelining platform for online data 

integration tasks. Over the past years developing and operating Kafka we extend its log-structured architecture as 

a replicated logging backbone for much wider application scopes in the distributed environment. Implementation 

of Apache Kafka usually to design and engineering experience to replicate Kafka logs for various distributed data-

driven systems at LinkedIn including source-of-truth data storage and stream processing. 

 



Implementation of Microservices to Improve Performance and Security of Train Search .. 

*Corresponding Author:  Nicko Sambrano Putra                                                                                        35 | Page 

2.13. Redis 
Redis is an in-memory database. Memory caching is a technique for storing data that is required by an 

application in memory, which can be retrieved quickly. Caching data in memory is highly effective when an 

application repeatedly accesses the data. Redis has a fast, scalable, and flexible design that makes it ideal for use 

cases such as real-time analytics, messaging, job queue management, caching, session management, and 

leaderboard scoring. It provides high availability, fault tolerance, and automatic failover through its built-in 

replication and clustering features. Redis can also be accessed using various programming languages, protocols, 

and tools, including Python, Java, Node.js, Redis-cli, and Redisson. 

 

2.14. Kubernetes 

Kubernetes is a cluster platform for containers or container orchestrator. Kubernetes is expected to be a 

solution for more efficient computing processes and the creation of systems with high availability. It is a popular 

open-source container orchestration platform that is widely used for managing containerized applications in 

production environments. 

 

III. METHODOLOGY 
3.1 The Current Condition (As-is) 

Pegipegi is one of the largest online travel agents in Indonesia that will help you manage your travel 

needs, whether it's business, work or just for sightseeing. Pegipegi offers a simple method of selecting, booking 

and paying for any hotel rooms, in Indonesia or abroad, and airline tickets. Currently Pegipegi is connected to 

more than 25,000 flight routes, more than 25,000 hotel options, as well as more than 2,800 train routes and airport 

trains that you can order from the Pegipegi website and mobile application.  

 

The current condition of the Train Search feature in the Pegipegi system can still be used and is still 

running today (at the time of writing). But seeing the increasing needs and security which is increasingly 

vulnerable to attacks from irresponsible people. Therefore, the team responsible for the Train domain decided to 

migrate slowly by moving the features that exist in the current monolith service. One of the existing features in 

the monolith service is the Train Search feature. Even though there are actually a lot of features in other Train 

domains that have been migrated before. 

 Apart from that, like legacy services in general, the existing Train Search feature uses outdated 

technology and also the technology framework developer team used has not carried out maintenance on that 

version. If you upgrade the version, it will definitely take quite a long time if you want to keep using the same 

technology. With these considerations and also the standardization set by the company, it was decided to revoke 

the Train Search feature in the legacy system to become a new service that will use Spring Boot technology. Apart 

from that, on the low-level side, the technology currently used still uses a blocking system implementation and 

will be changed to a non-blocking system with a reactive programming paradigm when migrating to a new service. 

In addition, on the high-level flow side of the service migration, changes will be made in the process of data 

retrieval, data storage, data monitoring and other matters that will be improved to better meet the needs of the 

product development team. 

 

3.2 The Identification of problems 

Based on the current conditions (as-is), there are several reasons for the Train Search feature which are the reasons 

for migrating to the new system, namely: 

1. The difficulty of making changes and development to meet the needs of product development on legacy 

systems. 

2. Technology is no longer in accordance with company standards. Even though the legacy system in the 

train domain still exists, many features have been migrated first using new technology. 

3. The current system technology is outdated, after considering several things, namely when upgrading 

versions with the same system costs more than migrating to a new system. 

4. Vulnerable to cyber-attacks, because the technology is outdated, this is consistent with the security of 

this technology which is no longer being maintained by the developer who developed the technology. Although 

this can still be overcome by the team that manages the server. 

5. The current feature still uses a blocking process and will be changed according to company standards 

that use a non-blocking process with a reactive programming paradigm. 

6. The workflow of the system is not optimal, there are several paths and ways of processing data that are 

not quite right which results in features that are not suitable for meeting needs within the limits set in contracts 

with third parties. 

 



Implementation of Microservices to Improve Performance and Security of Train Search .. 

*Corresponding Author:  Nicko Sambrano Putra                                                                                        36 | Page 

3.3 The Expected Condition (To-be) 

Based on the problems described above, the engineering team decided that the most ideal solution to do was 

Migrate Train Search for a new system. Of course, this migration is expected to solve the problems above, namely: 

1. Making technology changes using the Spring Boot framework and also using the Spring WebFlux 

library. These changes make the service easier to manage and also develop in the future according to needs. 

2. Better security than before because it was moved to a new system with a new architecture. 

3. The service used uses a reactive-programming paradigm in which the use of CPU and RAM resources is 

smaller when dealing with continuous requests or continuous requests. 

4. Optimizing and improving the flow of existing data processing to be presented to clients and also 

safeguarding the boundaries set by third parties. 

5. The last one is the uniformity of other technologies that have been migrated earlier according to the 

company's current standards (at the time of writing). 

3.4 Scope of Application 

To solve the problems that exist in Train Search, there are several scopes of work as follows: 

1. Configuration Features, this configuration will be used for many things that are useful in configuring 

services. But for now (at the time of this writing) there is only one feature that is needed according to the needs 

of the team, namely the feature for on/off service. However, this feature can only be accessed by internal teams, 

be it engineers, products, SRE or other teams who have the need to access this feature. 

2. Get Stations, this will aim to provide a list of existing stations. This feature also provides filters based on 

departure stations and arrival stations. 

3. Get Schedule, this will aim to provide the train schedule you want to search based on the route and also 

the selected filter. 

4. Get Schedule, this detail Aims to provide a detailed schedule of the selected train. 

5. Get Seatmap, this will Aims to provide a list of positions from the train seats that have been filled and 

those that are still empty from the selected train schedule. 

Features developed in the Train Search Worker service: 

1. Rate Limiter aims so that data search requests do not exceed the existing provisions. At the same time 

overcome so that users do not search data using bots. 

2. Circuit Breaker aims to ensure that when a request to a supplier an error does not become a blocking for 

other requests and also so that when a supplier does not respond to a given request, other requests can be thwarted. 

The difference between Train Search and Train Search Workers is the responsibility of the two services. Train 

Search is more responsible for communicating to the front-end and managing data. Train Search Worker focuses 

more on managing requests and responses to suppliers. These two services are linked by using a message broker. 

 

3.5 The Proposed Roles 

The author's position is as a Backend Engineer in the Engineering Department, especially in the Land 

Transportation team, here the author plays a role in developing and managing services and databases for the 

Pegipegi application, especially for Train and Bus services. 

 

 
Fig 3.1. Structure in the Project Team 

 

 

 

 



Implementation of Microservices to Improve Performance and Security of Train Search .. 

*Corresponding Author:  Nicko Sambrano Putra                                                                                        37 | Page 

In addition, the author also has an overview of the author's position in the company in terms of the organizational 

structure below 

 
Fig 3.2. Author's Role in the Company 

 

IV. RESULT AND DISCUSSION 

4.1. System Architecture Design 

The image below is the result of the architecture implemented in this project. However, due to the limitations of 

information that can be provided to the public, several parts of the architecture are not depicted. 

 

 
Fig 4.1. High-Level Architecture Design 

4.2. Database Design 

In the database structure owned by the Train Search service. There are 3 tables namely stations, cities, and routes. 

The stations table has a foreign-key relationship to the cities table through the city_id field. While the routes table 

is used to store a combination of stations and cities that will create a route between one station and another. 

 

 
Fig 4.2. Database Design 

 

 



Implementation of Microservices to Improve Performance and Security of Train Search .. 

*Corresponding Author:  Nicko Sambrano Putra                                                                                        38 | Page 

4.3. Comparison Result 
After the development of the Train Search and Train Search Worker services is complete, several comparisons 

exist in the legacy system and also the new service on the Train Search feature. Some of these comparisons include 

comparisons between the legacy system and also the new service, among others, as follows. 

4.3.1. High-Level Architecture 
The Search feature is no longer part of the legacy system where every incoming request to search for train 

schedules directly leads to the Train Search service. 

 

 
Fig 4.3. High-Level Architecture Comparison 

Moving the responsibility of the Search feature from the legacy system, of course, solved another 

problem, which is the difficulty of the team in developing features according to their needs because the code in 

the legacy system was very unmanageable and difficult to manage properly. In the legacy system, some files that 

function as handlers of the Train Search feature have line-of-code containing thousands of lines. When compared 

to the new service on Train Search and also Train Search Worker. The files that are created are more structured 

and also have smaller line-code for each file. This makes the future development process easier to organize. If 

calculated from the line-of-code results, the average line-of-code in the Train Search and Train Search Worker 

services is 39 to 40 lines. Although it is known that the number of lines in each file is not a guarantee that it will 

be easier to develop in the future, it can make development easier for developers to read and understand the 

existing project structure. 

 

4.3.2. Response Time 
In migrating, of course, the main goal besides reducing the load on the legacy system is the performance of the 

response time on requests sent to the server. 

 

 
Fig 4.4. Response Time Comparison 

Look at the image above, the request to perform the process is quite heavy. Both the legacy service and 

the Train Search service perform the same process without a caching mechanism. However, there is a considerable 

difference in response time, the legacy service returns a response in approximately 9 seconds while the new service 

performs the same process but only takes approximately 2 seconds. 

 

4.3.3. Security 
Basically, this vulnerability is found side by side with the version of the framework used on the legacy 

system. To make improvements, of course, the most correct way is to upgrade the version of the framework used. 

However, upgrading is very difficult because we must pay attention to the compatibility of the code in the libraries 

used in the framework. 



Implementation of Microservices to Improve Performance and Security of Train Search .. 

*Corresponding Author:  Nicko Sambrano Putra                                                                                        39 | Page 

 
Fig 4.5. Legacy System Vulnerability 

 
Fig 4.6. Train Search Vulnerability 

 
Fig 4.7. Train Search Worker Vulnerability 

List of vulnerabilities obtained from the JFog plugin in the IntelliJ IDEA application. Seen in service 

Train Search and Train Search Worker have 12 and 10 vulnerabilities in the library used, respectively. But both 

have vulnerabilities in the same library. When viewed from the picture above, the vulnerabilities that exist in the 

Train Search and Train Search Worker services are most commonly sub-libraries that are used in the main library 

used.  To deal with the vulnerability in the existing sub-library, we are waiting for the main library to provide an 

upgraded version. For vulnerabilities that exist in the Train Search System or the Train Search Worker, they can 

still be tolerated by the team agreement. 

 

4.3.4 Monitoring 
By migrating to the legacy system, it makes the team more flexible in making changes to the flow or workings of 

this Search feature. As well as making changes in managing monitoring data displayed on the monitoring 

dashboard. 



Implementation of Microservices to Improve Performance and Security of Train Search .. 

*Corresponding Author:  Nicko Sambrano Putra                                                                                        40 | Page 

 
Fig 4.8. Legacy System Monitoring 

 
Fig 4.9. New Train Search System Monitoring 

Compared to the existing data monitoring in the legacy system, the new Search service has more monitoring 

variations, which have 7 and 12 monitored data respectively. In the future, the data monitored in the new service 

will increase as the development progresses according to the needs of the product team. 

V. CONCLUSION AND RECOMMENDATIONS 

5.1. Conclusion 

From the results of the design and development of the Train Search feature migration, several conclusions can be 

drawn such as: 

1. With the development of the Train Search service and Train Search Worker, the burden on the legacy 

system has been reduced and minimized, as described in the previous chapter. It makes the responsibility of each 

feature become more independent without having code-coupling with other features. With this migration, the 

burden on the legacy system, which previously had three features, is reduced to two main features, namely booking 

and payment. There will be other features that will be migrated after the completion of the Train Search feature 

migration in the future. 

2. This migration brings benefits in terms of easier and more structured development process for the Train 

Search feature in accordance with existing needs. The ease of development arises from the fact that the code 

structure becomes better and easier to read compared to the code in the previous legacy system. This is proven by 

comparing the number of lines of code in the legacy system, where the handler file for the Search feature has 

hundreds to thousands of lines, while the average number of lines of code in the Train Search service and Train 

Search Worker files is about 40 lines. Although the number of lines in each file does not guarantee easier 

development in the future, it helps developers in understanding the project's structure. 

3. The implementation of the Event-Driven architecture reduces coupling between the Train Search service 

and the data supplier. To fulfill this requirement, a connecting service called Train Search Worker is introduced, 

which is responsible for bridging the Train Search service and the supplier in managing the requests sent to the 



Implementation of Microservices to Improve Performance and Security of Train Search .. 

*Corresponding Author:  Nicko Sambrano Putra                                                                                        41 | Page 

supplier. Another advantage of using the Event-Driven approach is that errors or increased latency will not affect 

the clients (mobile, web) making requests through the Train Search service. Besides serving as a bridge, the main 

function of the Train Search Worker service is to easily adapt to changes in constraints imposed by the supplier. 

In general, the Train Search service handles client (user) responsibilities, while the Train Search Worker service 

handles supplier responsibilities. 

4. The development of the Train Search service and Train Search Worker optimizes the management of 

data obtained from the supplier, making it more suitable for the product and the needs of front-end teams. This 

also results in faster response times compared to the legacy system. A comparison was made by performing the 

same process in both the legacy system and the new service, and they both produced the same response, but with 

different times. The legacy system took 9 seconds to process the request, while the new service only required 2 

seconds to complete the same request. 

5. This development improves the security of the Train Search feature, which previously had vulnerabilities 

in the legacy system. With this migration, vulnerabilities with various levels of criticality, high, medium, or low, 

can be reduced significantly. Although the new service may still have vulnerabilities in the Train Search or Train 

Search Worker, they can be tolerated according to the agreed terms. It can be concluded that the security of the 

Search feature in the new service is better than that in the legacy system. 

6. Furthermore, this migration allows for more extensive data monitoring, which helps the team identify 

deficiencies or errors that occur in the running service compared to the monitoring available in the legacy system. 

Compared to the monitoring data in the legacy system, the new Search service has a wider variety of monitoring, 

with each having 7 and 12 monitored data points, respectively. 

5.2. Recommendations 

Based on the conclusions, there are some recommendations to consider for future migration processes: 

1. The migrated service can still implement some features from the legacy system to be added to the new 

service, both in the Train Search service and Train Search Worker. 

2. Regularly document the developed service to ensure that the documentation always reflects what is 

implemented in the service. 

Additionally, there are some inputs from one of the experts at Pegipegi. These suggestions are expected to help 

future migration processes as follows :  

1. The migration process took a considerable amount of time because there were other tasks outside of this 

migration that had higher priorities. This caused other migration tasks to be postponed and other higher-priority 

tasks to be worked on, even though they were not part of this migration task. 

2. Insufficient data collection and the need for additional requirements for the service being developed. This 

led to the addition of requirements in the middle of the development process. 

3. Insufficient communication with the supplier related with new API contract. After the development, it 

was discovered that there were several new features in the API contract provided by the supplier. These new 

features can simplify previous development of the Train Search service. 

REFERENCES 

[1]. Nashrulloh, M. R., Setiawan, R., Heryanto, D., Sutedi, A., & Elsen, R. (2022). Designing Microservices Architecture for Software 
Product in Startup. Jurnal Teknologi Informasi (JUTIF), 3(1), 45-48. 

[2]. Munawar, G., & Hodijah, A. (2018). Analisis Model Arsitektur Microservice Pada Sistem Informasi DPLK. Sinkron, 3. 

[3]. Torvekar, N., & Game, P. (2019). Microservices and Its Applications: An Overview. International Journal of Computer Sciences and 
Engineering, 7(4), 803-809. https://doi.org/10.26438/ijcse/v7i4.803809 

[4]. Wonohardjo, E. P., Sunaryo, R. F., Sudiyono, Y., Surantha, N., & Suharjito. (2019). A Systematic Review of SCRUM in Software 
Development. Journal of Information, Operation Management, and Information Technology, 2(2), 167-192. 

https://joiv.org/index.php/joiv/article/download/167/192 

[5]. Blinowski, G., Ojdowska, A., & Przybyłek, A. (2022). Monolithic vs. Microservice Architecture: A Performance and Scalability 
Evaluation. IEEE Access, 10, 20357-20374. https://doi.org/10.1109/ACCESS.2022.3152803. 

[6]. Lewis, J., & Fowler, M. (2014). Microservices: A Definition of This New Architectural Term.  

https://www.Martinfowler.com/articles/microservices.html 
[7]. Fielding, R. T. (2000). Architectural Styles and the Design of Network-based Software Architectures [Doctoral Dissertation]. 

[8]. Bainomugisha, E., Lombide Carreton, A., Van Cutsem, T., Mostinckx, S., & De Meuter, W. (2012). A Survey on Reactive 

Programming. ACM Computing Surveys, 45, 1-34. DOI: 10.1145/2501654.2501666. 
[9]. Khriji, S., Benbelgacem, Y., Cheour, R., El Houssaini, D., & Kanoun, O. (2022). Design and Implementation of a Cloud-based Event-

driven Architecture for Real-time Data Processing in Wireless Sensor Networks. The Journal of Supercomputing, 78, 2843-2870. 

DOI: 10.1007/s11227-021-03955-6. 
[10]. Syaefulloh, A., & Yusrizal, F. (2019). Implementasi Dan Analisa Performa DataBase Cache Redis [Implementation and Performance 

Analysis of Redis Database Cache]. 

[11]. Wang, G., Koshy, J., Subramanian, S., Paramasivam, K., Zadeh, M., Narkhede, N., Rao, J., Kreps, J., & Stein, J. (2015). Building a 
replicated logging system with Apache Kafka. Proceedings of the VLDB Endowment, 8, 1654-1655. 

https://doi.org/10.14778/2824032.2824063. 
 



Implementation of Microservices to Improve Performance and Security of Train Search .. 

*Corresponding Author:  Nicko Sambrano Putra                                                                                        42 | Page 

[12]. Synopsys. (n.d.). What Is Software Architecture & Software Security Design and How Does It Work? Retrieved April 2, 2023, from 

https://www.synopsys.com/glossary/what-is-software-architecture.html 
[13]. TechTarget. (n.d.). What is event-driven architecture (EDA)? | Definition from TechTarget. App Architecture. Retrieved April 2, 

2023, from https://www.techtarget.com/searchapparchitecture/definition/event-driven-architecture 

[14]. Spring. (n.d.). EDA Getting Started | Building a RESTful Web Service. Retrieved April 2, 2023, from https://spring.io 
 


